
1

Implementing Human-Robot Interaction
Applications with GIMnet/MaCI

Seppo Heikkilä

Abstract—This paper presents how GIMnet/MaCI framework
can be applied for human-robot interaction research. The exam-
ple describes how WorkPartner service robot task communication
application was implemented with GIMnet/MaCI by connecting
together speech recognition, speech synthesis, manipulator con-
trol, and platform mobility MaCI modules. The implemented
system was used as such both with simulated and real WorkPart-
ner robot, demonstrating the GIMnet/MaCI flexibility to control
different robots with one implemented software. The paper shows
in a concrete implementation level detail how it is to implement
HRI application with GIMnet/MaCI framework and further use
it in a HRI research.

I. INTRODUCTION

This paper describes experiences of using GIM/MaCI
framework [3] for a human-robot interaction (HRI) research.
The idea of the paper is to provide detailed description of how
the HRI software development can be done with GIM/MaCI
framework and thus help people considering to use the system
for similar purposes. The examined example is the software
architecture developed for the SpacePartner project astronaut-
robot cooperation research.

SpacePartner project is a co-sponsored PhD project of the
European Space Agency (ESA) and the Aalto University.
The project was initiated under the ESA Network Partnering
Initiative (NPI) program, which target is to increase interaction
between the ESA and European universities. The idea of
ESA NPI program is also to enhance space research through
spin-ins from advanced non-space projects. In this case, the
spin-in is to utilize the existing WorkPartner service robot
to develop astronaut-robot cooperative task definition and
execution capabilities.

The WorkPartner service robot, or the future SpacePart-
ner, in shown in Figure 1. The WorkPartner robot and the
SpacePartner project has been introduced with more details in
[1], [2].

Figure 1. WorkPartner service robot working as an astronaut assistance.

II. DEVELOPED SYSTEM STRUCTURE

The purpose of the developed software is to enable astronaut
and robot communicate two different tasks. The first task is
doing measurements of wanted sample and the second task
is inserting a measurement unit to pointed location on the
ground. Basically the user has to thus communicate action
and target.

The structure of the developed software is shown in Fig-
ure 2. The software is basically distributed to three different
computers. First one is the computer onboard the robot, which
creates MaCI modules interfaces to the robot devices, e.g.
SICK laser scanner. The second computer is a server computer
which is running all the computation intensive software mod-
ules, such as laser scan based odometry calculations. The third
computer is carried by the user and provides MaCI modules
that enable to receive the user communications.

All the arrows between modules that have not been named
in the Figure are using GIM/MaCI communication and are
connect through GIM/MaCI tcpHub [3] which a core server
of the GIMnet network. TcpHub enables modules to announce
the services that they can provide and share data to multiple
clients. For example when the laser scanner data in this
example is send to tcpHub it is distributed directly to bbSLAM
and human localisation clients.

III. CREATING AN USER INTERFACE SERVICE

In order to get a concrete idea how an user interface module
can be added to the above software, lets examine how the user
localisation module was constructed. The idea of this module
is to locate the user from the robot laser scanner data. This
means that the input of the module is laser scanner data, i.e.
input from MaCI Ranging server, and output of the module is
the location of the user. Thus the module is a service that is
outputing position data, i.e. MaCI position server.

The basic idea with GIM/MaCI framework is that there is
an example implementation of server and client for each type
of module. In our case the module type is Position module as
we provide Position interface. There is already implementation
of Position module which sends random location data and an
example of client that can read the position data. We can use
the same client of course here and we can take the dummy
Position module example as our starting point.

All types of MaCI modules have similar GIMnet initiali-
sation code, shown in Algorithm 1. The GIMI class provides
the basic communication capabilites for the module and takes
care of the connection to the tcpHub which enables servers
to sent their data and clients to receive it. Second part is



2

Figure 2. GIM/MaCI WorkPartner Human-Robot Interaction(HRI) software
structure. All arrows without description are communication through tcpHub
and each MaCI server has a MaCI client in the other end of the arrow.

Algorithm 1 GIMI initialisation algorithm connecting to
tcpHub. Example values for the variables: tcpHub_IP = ”as-
robo.hut.fi”, tcpHub_Port = 50002, gimnetName = ”Default”
and maciGroupName = ”WorkPartner”.

#include "gimi.h"
// Create GIMI class and connect to tcpHub
gimi::GIMI g;
g.connectToHubEx(tcpHub_IP, tcpHub_Port, gimnetName);
// Create MaCICtrl instance and set group name
MaCICtrl::CMaCICtrlServer mcs(&g);
mcs.SetGroupName(maciGroupName);

creating of a MaCI instance, which provides generic Machine
Control Interface (MaCI) services, such as naming system.
The most important MaCI property is probably to set the MaCI
name which is basically name of the system where the service
belongs, e.g. WorkPartner robot in our case.

In this point we have established connection to the tcpHub.

Algorithm 2 Creating Position server and establishing it to
the tcpHub. Example values for the variables: interfaceInstan-
ceName = “Pose”.

#include "PositionServer.hpp"
// Create position server class, name it and open it
Position::CPositionServer
ps(&mcs, -1);
ps.SetInterfaceInstanceName(interfaceInstanceName);
ps.Open();

Algorithm 3 Sending position data to the clients. Example
values for the variables: x=y=a=vx=vy=va=0, p=0.9.

// Create position data and send it to the server
CPositionData pos;
pos.CreateInternalBinBag();
pos.SetPose2D(TPose2D(x,y,a));
pos.SetVariance2D(TVariance2D(vx,vy,va));
pos.SetProbability(TProbability(p));
ps.SendPositionEvent(pos);

Next we need to create the position server. This is shown in
Algorithm 2. First, we need to connect the Position module
to the MaCICtrl class we created earlier and set the name for
the interface, e.g. Pose. After that we need to only open the
service in order it to appear to the tcpHub.

Naturally, it is not enough to only have the service estab-
lished on the tcpHub but we need also to handle the data
going and coming from the server. In Position interface case
especially important is of course the sending of the data. The
code shown in Algorithm 3 describes how data is send to the
tcpHub. The idea of the InternalBinBag is to encode the data
for sending. In real case you might want to run this code in a
loop on a separate thread and you would need to implement
also the algorithm that calculates the human location.

This is shortly how a Position service is set up in practise.
The Position server is push type of interface, i.e. the data is
not polled by the clients but pushed by the service to the
clients. Most services in GIM/MaCI which are providing data
are implemented in this push type of way.

IV. CREATING CLIENT MODULE FOR SERVER

Creation of a client starts exactly like creation of a service,
i.e. with the code shown in Algorithm 1. After the connection
is established to the tcpHub, the process of opening of service
is a bit different as the service is searched using so called
Service Locator (SL) name. Code showing this is shown in
Algorithm 4.

Next we need to just keep checking if there is new position
data available. This can be done with the code shown in

Algorithm 4 Creating a client that connects to the Position
server. Example values for the variables: MaCISL_name =
“WorkPartner.MaCI_Position.Pose”, timeout_ms = 10000.

#include "PositionClient.hpp"
// Create position client class
MaCI::Position::CPositionClient pc(&g, 0);
MaCI::MaCICtrl::SMaCISL sl(MaCISL_name);
pc.SetDefaultTarget(sl, timeout_ms);



3

Algorithm 5. The sequence parameter makes sure that all the
available data will be read one after the other.

Algorithm 5 Example code of Position client data receiving.
Example values for the variables: timeout_ms = 1000. A non
NULL sequence parameter is required in case all the data
needs to be read and processed.

// Check if new data is available and print it
CPositionData posData;
int sequence = -1;
bool dataAvailable = pc.GetPositionEvent(posData, &sequence

, timeout);
if(dataAvailable)
posData.Print(1);

V. TCPHUB VIEW

When the system shown in Figure 2 is fully started up, we
get several services initialized to our tcpHub. The Figure 3
shows how these services look on a tcpHub with a program
called Gimbo. Gimbo enables for example to browse available
MaCIgroups, i.e. basically machines, and the services they
provide, e.g. Position.

Figure 3. Gimbo service view with all WorkPartner services on the left and
all the Gimbo clients on the right.

The Gimbo can launch separate programs, suchs as Joy-
stickCtrl, which are generic clients that can use the provided
services. The reason for launching separate programs is that if
one of the programs crashes it does not affect Gimbo or other
programs.

Some of these separate programs in Gimbo, that you might
want to use, are Logger, saves data sent by selected mod-
ules, Player, reads and “plays” previously saved data from

filesystem, and JoystickCtrl, enables to control JointGroupC-
trl services and SpeedCtrl services. In addition MuRo and
MaCIGUI2 are useful to visualize data, e.g. from position and
ranging services.

VI. DISCUSSION

The implemented system has been tested with user tests and
it proved that GIM/MaCI framework was able to work as a
backbone of a HRI research software.

Top five advantages of GIM/MaCI framework
• Amount of pre-existing modules, such as drivers and

algorithms with implemented "ready to use" server and
client modules.

• Speed of communication, around 1ms back and worth
response times can be expected in LAN.

• Stability, the core functionalities have never failed.
• System distributability, only driver modules need to be

running on the robot or in the user laptop.
• Modularity, the code is forced to be inherently modular

with standard MaCI interfaces which makes it more easily
manageable.

Top five weak points of GIM/MaCI framework
• Lack of implementation examples. For example, how a

complete robot could be implemented to be GIM/MaCI
compatible.

• Lack of theory documentation for MaCI, in addition to
SI units. For example, how angles and coordinates are
defined.

• Number of pre-existing user interface modules, basically
only GUIs are available at the moment.

• Establishing communication takes time. Service Locator
(SL) search, to find the available services, can take up to
ten seconds.

• Modules have sometimes problems to connect to tcpHub
in high-delay wireless networks.

VII. CONCLUSIONS

The GIM/MaCI framework implementation for HRI re-
search has been described. The modular and distributable
structure of the GIM/MaCI framework was shown to have the
flexibility required by inherently distributed HRI applications.
Although the user interface development has not been core
target of the GIM/MaCI framework, the mature core capabil-
ities and existing examples makes user interface development
a straight forward process.

REFERENCES

[1] Seppo Heikkilä. Spacepartner - robotic astronaut assistant. In Kalevi
Huhtala and Janne Uusi-Heikkilä, editors, Proceedings of the second
workshop on generic intelligent machines, Tampere, 2009. Tampereen
teknillinen yliopisto.

[2] Seppo Heikkilä, Frederic Didot, and Aarne Halme. Centaur-type service
robot technology assessment for astronaut assistant development. In Proc.
10th ESA Workshop on Advanced Space Technologies for Robotics and
Automation (ASTRA), Noordwijk, Netherlands, November 2008.

[3] Jari Saarinen, Antti Maula, Renne Nissinen, Harri Kukkonen, Jussi
Suomela, and Aarne Halme. Gimnet - infrastructure for distributed control
of generic intelligent machines. In Proceedings of the 13th IASTED
International Conference on Robotics and Applications Telematics 2007,
2007. The 13th IASTED International Conference on Robotics and
Applications Telematics.


