

Paavo Heiskanen

Development of a dynamic simulator of a mobile

robot for astronaut assistance

Thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Technology.

Helsinki, 08/11/2008

Supervisors:

Professor Aarne Halme Professor Kalevi Hyyppä

Helsinki University of Technology Luleå University of Technology

Instructor:

Seppo Heikkilä M.Sc.(Tech.)

Helsinki University of Technology

Preface

The research for this Master's Thesis was carried out at the Helsinki University of

Technology Automation Technology Laboratory during the spring of 2008. It will

also be presented in ASTRA 2008, the 10th ESA Workshop on Advanced Space

Technologies for Robotics and Automation.

First and foremost I would like to express my gratitude to the European Space

Agency (ESA) for supplying me with a grant without which my work would have

been impossible. I also thank the personnel of Helsinki University of Technology,

Faculty of Electronics, Communications and Automation and especially the

Automation Technology laboratory for their continuous endeavor to educate and

help me.

I would not have completed this thesis without help from people contributing to open

source mailing lists and newsgroups, or the helpful souls at several IRC-channels,

who voluntarily gave their time to help me, with no benefit to themselves. Your

contribution was invaluable. Another great source of assistance has been my

collagues, especially Mr. Jan Hakenberg, I thank you. Also my gratitude goes to

Michael Bailey for proofreading this thesis.

Finally, I would like to thank my friends and family, who have always encouraged

and urged me to do my best. I hope to stand up to your expectations. And finally,

exceptionally warm thanks go to my fiancée Outi Lahtela who had to suffer living

with me when I was writing this thesis.

Talk is cheap. Show me the code.

Linus Torvalds

Helsinki, August 11, 2008

Paavo Heiskanen

Teknillinen Korkeakoulu Diplomityön tiivistelmä
Tekijä: Paavo Heiskanen
Työn aihe: Dynaamisen kenttärobottisimulaattorin kehittäminen astronauttien

avustamiseksi
Päivämäärä: 11. elokuuta 2008 Sivumäärä: 97
Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta
Laitos: Automaatio- ja systeemitekniikan laitos (AS)
Ohjelma: Master's Degree Programme in Space Science and Technology
Professuuri: Automaatiotekniikka (Aut-84)
Työn valvojat: Professori Aarne Halme (TKK)

 Professori Kalevi Hyyppä (LTU)
Työn ohjaaja: Seppo Heikkilä (TKK)
Robottien käytöstä on havaittu saatavan suurta hyötyä avaruustutkimuksessa. Avaruus on erittäin

vaarallinen toimintaympäristö ihmisille, muttei niinkään roboteille. Näin ollen robotit voivat olla

suureksi avuksi yksinkertaisissa tehtävissä kuten tiedustelussa, tavaroiden siirtämisessä ja

tieteellisissä mittauksissa. Tämän työn tutkimuskohteena on kentaurirobotti WorkPartner, jonka

avulla on mahdollista suorittaa useita näistä tehtävistä. WorkPartner on kenttärobotti joka on

suunniteltu interaktiiviseen yhteistyöhön ihmisten kanssa ja jota käytetään Euroopan

avaruusjärjestön Network Partnering -ohjelmassa astronautti-robotti yhteistyön tutkimiseen.

Lopputyö esittelee “SimPartner”-ohjelmiston, dynaamisen robottisimulaattorin WorkPartner-

robotille käyttäen ODE (Open Dynamics Engine) -fysiikkakirjastoa. Ohjelmisto sisältää tarkan

mallin robotista, käsittäen osien mitat, painot, nivelet, sensorit ja toimilaitteet. Kaikki sensorit ja

toimilaitteet tarjotaan käytettäväksi asiakas-palvelin-rajapintoina.

Realistinen dynaaminen robottimalli on monella tapaa hyödyllinen astronautti-robotti -yhteistyön

kehittämisessä. Robottimallia voidaan käyttää kontrollikoodin kehittämiseen ja robotin käytöksen

ennustamiseen esimerkiksi teleoperointitehtävissä. Mallia voidaan myös käyttää voimien ja

vääntömomenttien ennustamiseen tilanteissa, joissa mittausten tekeminen varsinaisesta robotista

olisi vaikeaa tai mahdotonta. Lisäksi mallia voidaan käyttää turvallisesti odottamattomissa

tilanteissa ja tehtävien opetuksessa silloin, kun varsinainen robotti on muissa tehtävissä.

Työssä osoitettaan että varmennettavissa olevan tosiaikaisen dynaamisen robottisimulaattorin

luominen on mahdollista vertaamalla simulaatiosta saatuja tuloksia mittauksiin jotka on tehty

suoraan robotista. Vertailun mahdollistavat TKK:lla aiemmin tehdyt tutkimukset, joissa

robottialustaa on testattu esimerkiksi pyöräkävelyn aikana.

Mallin suorituskyky varmistetaan vertaamalla saatuja tuloksia matemaattisiin malleihin. Lisäksi

mallin puutteet ja epäideaalisuudet arvioidaan luotettavan lopputuloksen varmistamiseksi.

Suorituskyvyn analysoinnin lisäksi simulaattori esitellään muiden jo olemassa olevien

avaruusrobottisimulaattorien kontekstissa.
Avainsanat: robottisimulaattori, simulointi, WorkPartner, modulaarinen simulaattori, mallinnus

iii

Helsinki University of
Technology Abstract of the Master’s Thesis
Author: Paavo Heiskanen
Title of the thesis: Development of a dynamic simulator of a mobile robot for astronaut
assistance
Date: August 11, 2008 Number of pages: 97
Faculty: Faculty of Electronics, Communications and Automation
Department: Automation and System Technology
Program: Master's Degree Programme in Space Science and Technology
Professorship: Automation Technology (Aut-84)
Supervisors: Professor Aarne Halme (TKK)

Professor Kalevi Hyyppä (LTU)
Instructor: Seppo Heikkilä (TKK)
The need for robotic assistance has been identified to be essential in space exploration missions.

The hazardous space exploration environment is extremely difficult for humans but manageable

for robots. Thus robots can be a valuable aid even in simple tasks such as scouting, moving

objects, and performing measurements. This work is targeted to a centauroid robot, called

WorkPartner, which can perform many of these required tasks. The WorkPartner is a mobile

service robot, which is designed to work interactively with humans and is currently used within the

ESA Network Partnering programme to research astronaut-robot cooperation.

This thesis describes “SimPartner”, a dynamic robot simulator of the WorkPartner robot created

using ODE (Open Dynamics Engine) software. The software incorporates an accurate model of the

robot, including part lengths, masses, joints, actuators and sensors. All the model's sensors and

actuators are provided by using a client/server architecture.

There are several reasons why a realistic dynamic robot model is useful for robotic astronaut

assistance development. The robot model can be used to develop the robot's control code and to

predict its behavior e.g. in tele-operated tasks. The model can also be used to estimate forces and

torques that would be difficult to measure from the actual robot. In addition, the model could be

safely used to define and test tasks for handling unexpected events and to enable off-line robot task

teaching.

The scientific contribution of this thesis is to demonstrate that it is possible to create a verifiable

real-time dynamic mobile robot simulator for a centaur-like mobile service robot. This is achieved

by comparing the simulation with the measurements from the actual WorkPartner robot. This can

be done for example by comparing the joint torques during wheel walking, which has already been

studied at TKK.

In addition to the analysis of simulation performance, the simulator is presented and discussed in

the context of previous space robot simulators. Furthermore, the scientific validity of the approach

is demonstrated by verifying the mathematical concepts behind the model, and also calculating and

verifying the performance levels and limitations of the model.
Keywords: robot simulator, simulation, WorkPartner, modular simulator, modeling

iv

Contents
 1 Introduction...1

 1.1 Thesis objectives...1

 1.2 History...2

 1.3 Core concepts..3

 1.3.1 Mobile robots...3

 1.3.2 Planetary rovers...3

 1.3.3 Physics engines..4

 1.4 Thesis outline..5

 2 Previous Work...6

 2.1 Mobile robot simulators..6

 2.1.1 SimMechanics...7

 2.1.2 Vortex..7

 2.1.3 The P/S/G simulator project..8

 2.1.4 WebOts..10

 2.1.5 Digital Spaces..11

 2.2 Planetary rover simulators...11

 2.2.1 ROAMS...12

 2.2.2 RCAST..14

 2.2.3 RCET...15

 2.2.4 RPET...16

 2.3 Related Frameworks..17

 2.3.1 DARTS..17

 2.3.2 DSHELL (DARTS Shell)..18

 2.3.3 ODE...18

 2.4 Conclusions...19

 3 SimPartner Framework...22

 3.1 Overview...22

 3.1.1 Parametrization..25

 3.2 Open Dynamics Engine details...25

 3.2.1 Bodies and geoms..25

 3.2.2 Joints..26

 3.2.3 The simulation loop...26

 3.2.4 Collisions...27

 3.3 Physics engine wrapper...27

 3.4 Database..28

v

 3.4.1 Selected Tables..29

 3.4.2 Data analysis..31

 3.5 Environment definition...32

 3.5.1 Terrain modeling with heightfield ..34

 3.6 Robot definition..35

 3.7 Sensors and actuators..35

 3.7.1 TCP/IP communication...36

 3.7.2 Sensors...36

 3.7.3 Actuators..37

 3.8 WindowManager, visualization and control..38

 3.9 WorkPartner model...39

 3.9.1 Generation 1..39

 3.9.2 Generation 2..40

 3.9.3 Generation 3..41

 3.9.4 Generation 4..41

 3.10 SimPartner clients...42

 3.10.1 The interactive client...42

 3.10.2 The sequencer client..43

 4 SimPartner Performance ..44

 4.1 ODE accuracy...44

 4.1.1 Integrator...44

 4.1.2 Friction ...46

 4.1.3 Collision..48

 4.2 Robot behavior..49

 4.2.1 Generation 1 – driving a circular path...49

 4.2.2 Generation 2 – a moving laser scanner..53

 4.2.3 Generation 3 – Manipulator...54

 4.3 Use case – control code development...57

 4.3.1 Movement by rotation of skidding wheels..58

 4.3.2 Caterpillar movement..59

 4.3.3 Rolling Walking...60

 4.4 SimPartner validation..63

 4.4.1 Model weight distribution...64

 4.4.2 Test terrain...65

 4.4.3 Test velocities..67

 4.4.4 Simulation velocities...67

vi

 4.4.5 Simulation wheel forces..68

 4.5 Other Considerations...69

 4.5.1 Object-object penetration..69

 4.5.2 Object-ground penetration...70

 4.5.3 Physics engine numerical instabilities...71

 4.5.4 Clock inaccuracy...71

 4.5.5 Rolling friction..71

 4.5.6 ODE version dependency..71

 4.6 SimPartner results analysis...72

 4.6.1 Realization of identified good features..72

 4.6.2 Stability..74

 4.6.3 Performance...75

 4.6.4 Open source software development...76

 5 Conclusions...77

 5.1 Future work...77

 6 References...79

 7 Appendices..81

 7.1 Appendix 1 – Physics engines...81

 7.2 Appendix 2 - UML sketch...82

 7.3 Appendix 3 - Software versions..83

 7.4 Appendix 4 - Database structure...84

 7.5 Appendix 5 - Selected SQL queries..85

 7.6 Appendix 6 - Distance sensor measurements..86

 7.7 Appendix 7 - Motion sequence in rolling walking..87

Index of Figures
Figure 1: Incrementing error of a body in free fall...44

Figure 2: Effect of time step on integration error coefficient.....................................45

Figure 3: Falling body with initial velocity...46

Figure 4: Velocity difference of a sliding cube with friction......................................47

Figure 5: Collision of two spheres..48

Figure 6: Asymmetry of the collision of two spheres...49

Figure 7: Trajectory of the robot when driving a circular path...................................50

Figure 8: Circle fitted to the data points of the trajectory...52

Figure 9: Error as a function of time in a circular trajectory......................................53

vii

Figure 10: Distance scanner sensor error..54

Figure 11: Sum of the wheel forces..56

Figure 12: Forces affecting each wheel in the third generation simulation................57

Figure 13: Robot CoM position with skidding wheels...58

Figure 14: Wheel forces in skidding wheel movement..58

Figure 15: Robot CoM position with caterpillar locomotion......................................59

Figure 16: Wheel forces in caterpillar locomotion...60

Figure 17: Robot CoM position with rolling walking..61

Figure 18: Wheel forces in rolling walking..61

Figure 19: Wheel forces in one motion sequence...62

Figure 20: Wheel forces from an earlier simulation. ...63

Figure 21: Wheel forces in SimPartner...63

Figure 22: WorkPartner test terrain...66

Figure 23: WorkPartner wheel forces during the test...66

Figure 24: WorkPartner velocity during the test run...67

Figure 25: SimPartner velocity during the simulation..68

Figure 26: Wheel forces in the simulation..69

Figure 27: SimPartner performance without extra applications.................................75

Figure 28: SimPartner performance with extra applications......................................75

Figure 29: Sensor readings opposite the turning direction (legend in radians)..........86

Figure 30: Sensor readings in the turning direction(legend in radians)......................86

Index of Illustrations
Illustration 1: WorkPartner - a mobile service robot (artist's impression)....................3

Illustration 2: Gazebo components...10

Illustration 3: ROAMS screen shot...12

Illustration 4: RCAST architecture...14

Illustration 5: Data flow in a DSHELL simulation...18

Illustration 6: General mobile robot simulator structure...19

Illustration 7: Modularized structure of SimPartner...23

Illustration 8: A collision, picture source (Smith n.d.). ..27

Illustration 9: Fixed time step simulation with variable time visualization................28

Illustration 10: Position, axis and angle representation..30

Illustration 11: A maze. ..33

viii

Illustration 12: WorkPartner on a heightfield...34

Illustration 13: Robot graph..35

Illustration 14: first layers of the OSI model..36

Illustration 15: WorkPartner CAD model...39

Illustration 16: 1st generation model..39

Illustration 17: 2nd generation model...40

Illustration 18: 3rd generation model..41

Illustration 19: 4th generation model..41

Illustration 20: Test setup for the gamepad client...42

Illustration 21: Coulomb friction..46

Illustration 22: Turning radius of a vehicle with split steering...................................50

Illustration 23: A moving laser scanner..53

Illustration 24: Action sequence...55

Illustration 25: Wheel forces when creating the validation model.............................65

Illustration 26: Object-object penetration...69

Illustration 27: Object-ground penetration..70

Illustration 28: SimPartner software structure..82

Illustration 29: Database structure..84

Illustration 30: Rolling Walking leg movements, From (P. Aarnio 2002)..................87

Index of Code Examples
Code example A: Part of a properties file...25

Code example B: Accessing the database from Matlab..31

Code example C: Definition of a test particle at rest at 10 m.....................................33

Code example D: Control sequence..43

Index of Tables
Table 1: Force measurements from tests with the WorkPartner robot........................64

Table 2: Methods to increase simulation stability, adapted from (Smith n.d.)74

Table 3: Comparison of different physics engines..81

Table 4: Different software libraries used...83

ix

Symbols, Abbreviations and Glossary
AABB Axis-Aligned Bounding Box

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

com center of mass

DARTS Dynamics Algorithms for Real-Time Simulation

DSHELL DARTS Shell

DTD
Document Type Definition (defines XML document

structure)

EADS European Aeronautic Defence and Space Company

FPS Frames Per Second

GIM Generic Intelligent Machines – a research group at TKK1

Hardware-in-the-loop
Actual hardware is wired to the simulator to study the effects

of simulated sensor input.

HMI Human-Machine Interface

LCP Linear Complementarity Problem

NTP Network Time Protocol

ODE Open Dynamics Engine

Operator-in-the-loop
Simulation in real time permitting human interface with the

simulation.

OSI Open Systems Interconnection

P/S/G Player/Stage/Gazebo (an open source simulator project)

RCET Rover Chassis Evaluation Tools

RFC Request For Comments - “standards” that define the internet

RMPET Rover Mobility Performance Evaluation Tool

ROAMS Rover Analysis, Modeling and Simulation

RPET Rover Performance Evaluation Tool

SDL Simple DirectMedia Layer

SLAM Simultaneous Localization And Mapping

SOA Spatial Operator Algebra

Tcl Tool command language – a programming language

TCP/IP Transmission Control Protocol / Internet Protocol

UML Unified Modeling Language

XML eXtensible Markup Language

1 See http://gim.tkk.fi/ for more information.

x

1

 1 Introduction
The purpose of this thesis was to create and validate a dynamic robot simulator to be

used in Seppo Heikkilä's PhD study on Astronaut and robot cooperation for natural

and seamless task execution. The WorkPartner robot is a novel construction and

development time using the robot is severely limited. Furthermore, since part of the

study is being conducted in the ESA premises in Noordwijk, the Netherlands, it is

difficult to perform testing with the actual robot.

 1.1 Thesis objectives

With the above mentioned constraints in mind it was decided to design and program

a robot simulator that could be used to develop software for the actual robot. The

major design objectives were:

● Real-time dynamics modeling software with the SpacePartner body and torso

capable of interacting with other virtual objects (forces, locations and

velocities of different parts extractable).

● To develop a robust XML-based language to describe the robot and its

environment (including masses, dimensions, and joints).

● 3D visualization of simulation for analysis, debugging and control purposes.

● MySQL-based modular software architecture, i.e. separation of different

functionalities (physics, visualization, communication, control).

● Comparison of simulation data with results acquired from the actual robot.

● The developed software should run on Linux (Ubuntu/Debian).

The minor/optional design objectives were:

● GIM interface to the model.

● Editor for the XML-based world and robot model (use of an existing editor

could be the best option).

● The developed software should run on Mac and Windows.

A crude division of work was derived from these objectives:

● State-of-the-art study, literature review – 2 weeks

● Framework functionality – 5 weeks

● SpacePartner modeling – 5 weeks

● Additional features – 5 weeks

● Testing and evaluation – 5 weeks

● Thesis finalization – 3 weeks

2

 1.2 History

The history of computer science is closely related to the history of dynamic

simulation, as described by (Kovo 1999, p.5-6). The first computers were used to

solve partial differential equations related to the development of the atomic bomb.

Military, aeronautic and space industries have been using computer simulation from

as early as 1950s. During the fifties and sixties analog computers were used

extensively. These machines were able to solve differential equations very fast and

the first hardware-in-the-loop solutions were in fact reached using them. The digital

revolution of the 1970s replaced the analog computers with digital ones. During this

shift hybrid computers containing both analog and digital components were also

used. Nowadays simulation is used everywhere in our society, from weather forecasts

to ensuring that traffic lights are timed efficiently. Wind tunnel testing is very

expensive since the pieces to be tested must be fabricated and tested. Computer

simulation of the effect of drag forces on cars and aeroplanes offers great savings for

vehicle manufacturers. With the development of 3D-graphics, simulators can also be

used as training simulators for airline pilots and other personnel. The whole video

game industry can also be seen as a branch of computer simulation.

The computer technology used in computer simulation has traditionally been of the

highest standard and even now a major portion of supercomputer time is devoted to

calculating weather forecasts. However, the rapid development of PC technology has

made it possible to simulate dynamic systems on desktop computers. Dynamic robot

simulators are now available for commercial, off-the-shelf hardware.

The fundamental trade-off in dynamic real-time simulation is between real-time

performance and simulation accuracy. At a very low level, accuracy is defined by the

number of bits the program uses to represent floating-point numbers. This is a feature

of digital computers that sets an ultimate limit on how accurate the system can be. In

practice, the limit is much poorer. Processing power and memory define the length of

the possible time step that the computer is able to calculate within the given real-time

constraint.

Distributed computing and parallel processing, combined with the low cost of

memory and storage media offer some relief to these problems but it has to be

understood that there is a limit to the accuracy a real-time computer based simulation

software can achieve.

3

 1.3 Core concepts

This section is an overview of different simulators used in modeling and testing of

terrestrial mobile robots and planetary exploration rovers. The goal of this section is

to identify the best features of different simulators and to validate design choices for

creating a good quality mobile robot simulator.

 1.3.1 Mobile robots

A mobile robot is an automatic machine that is capable of moving in its environment

and is usually able to interact with it. Mobile robots are often characterized by their

means of locomotion, namely legged, wheeled or tracked. Robots are often used in

tasks that are too repetitive, monotonous and/or dangerous for human beings. An

example of a mobile robot is shown in illustration 11.

 1.3.2 Planetary rovers

A planetary rover is a mobile robot located in an extraterrestrial environment,

exploring its surroundings. Rovers are very practical in planetary exploration and

have been used since the Russian Lunokhod 1 landed on the moon in 1970. The

extraordinary success of NASAs MER-A and MER-B (more commonly known as

Spirit and Opportunity) solidified the role of autonomous rovers in planetary

exploration.

According to (Bauer, Leung, & Barfoot 2005), the downside of the use of

autonomously moving rovers is the increased need to test the stability of mechanical

solutions, as well as the sensor and actuator hardware and software, and perhaps

1 Picture source http://automation.tkk.fi/WorkPartner

Illustration 1: WorkPartner - a
mobile service robot (artist's
impression).

4

most importantly the onboard computer system. This increases the need for quality

simulation software. Simulations also make multiple iterations cheaper in the early

design phases as prototypes do not have to be built. Simulation also makes it possible

to study the effects of parametric changes on design details. Finally, it is very

difficult to reproduce extraterrestrial conditions, such as martian gravity, without

using simulations.

 1.3.3 Physics engines

The core of the simulator software is the physics engine. Physics engines can be

categorized using many different metrics, the most relevant here being accuracy and

required computing power. These two often form a trade-off, increased accuracy

deteriorates real-time performance and vice versa. As both are crucial for a mobile

robot simulator, it is necessary to determine when the accuracy is good enough for

the simulation task at hand. When the accuracy is determined it is possible to check

whether the frame rate is sufficient for real-time operator or hardware-in-the-loop

performance.

(Erleben 2004, p.10) wrote that the functionality of a physics simulator can be

crudely divided in two main parts, physics simulation and collision detection. The

physics simulation component calculates the motion of the objects in the systems

based on their current state (position, velocity, acceleration, forces, torques and

impulses). This requires integration, which also creates inherent error in the

simulator. Collision detection is a geometrical problem of intersecting objects and it

is computationally intensive. When the positions of all the objects have been

calculated by the simulation component, the collision detection component

determines collisions, or technically, points of intersection between objects. After

this the collisions have to be resolved and the resulting forces calculated. This is a

very complex problem, and general solutions do not exist. Collision detection

problems cause unidealities and instabilities in dynamic simulations. Often a

multitude of simplifications must be made to make the collision detection system

work.

5

Physics engines can be grouped by their simulator paradigms. Some of the well

known include:

• Constraint-based methods (Erleben 2004, p.20)

Very complex paradigms that do not allow penetration and are typically very

good at handling complex configurations with static contacts.

• Penalty methods (Erleben 2004, p.20)

Simpler than constraint-based methods, can easily be extended to handle soft

bodies. Allow penetration of objects.

• Impulse-based methods (Erleben 2004, p.20)

Interaction between objects is simulated as collision impulses. Do not allow

penetration. Static contacts modeled as a series of micro-collisions.

• Collision synchronization (Optimization-based) (Erleben 2004, p.23)

Makes large time steps possible by synchronizing collisions at the end of each

frame.

• Port-based modeling (Poulakis & Joudrier 2006)

The system is modeled using bond graphs in which different components and

subsystems are connected via bonds that exchange energy. The model has

causality and using Kirchoff's laws the total energy transfer can be calculated.

The existence of these different paradigms itself reflects the complexity and

computational costliness of physics simulation. The field has been researched from

the 1960s onwards but only now is it becoming possible to build accurate real-time

physics engines.

Appendix 1 lists four commonly used physics engines. It can be seen that there is no

all-in-one solution but rather developers must select their engine carefully to suit

their project. For example, SimMechanics offers seamless Matlab interaction and

ease of use as systems can be built with Simulink-style function blocks. The

downside is that it completely lacks collision detection. In comparison, ODE only

offers a C++ -interface but is more versatile and has collision detection.

 1.4 Thesis outline

The outline of this thesis follows the process of the associated software framework

development. The second section describes the state-of-the-art research where

existing simulators were studied to establish development targets for the software.

The third section describes the software framework itself and the fourth the

associated testing and validation. The final conclusions are presented in the fifth

chapter.

6

 2 Previous Work
This section starts with an overview on mobile robot simulator usage reasons and

principles. After this some state-of-the-art simulators are presented. The details of

some of the simulators can be found in appendix 1. After this planetary rover

simulators are presented.

 2.1 Mobile robot simulators

The necessity for mobile robot simulators has been recognized by several different

robotics research groups. Simulation is used in some phase of almost every mobile

robot research project (P. Aarnio, Koskinen, & Ylönen 2001, p.1). There are several

reasons why robot simulators are useful, including:

1) Reduction of development time of the robot control code.

2) Increased quality of the robot control code.

3) Enabling the testing of complex control algorithms in real time using

powerful computers to perform tasks that are normally done by simple

controllers.

4) Cost savings by avoiding unnecessary damage to actual robot equipment

when testing new control strategies or stability solutions.

5) Simulation of complex systems without having to build them.

6) Studying robot behavior in an unattainable environment.

Previously, several research groups have also built whole simulator packages

themselves, leading to robotics specialists concentrating on things that are not

essential in constructing a robust robot control code, such as ground contact

modelling and impact forces as described in (Buehler et al. 1999).

The majority of simulators developed by researchers are created using open source

source rationale to promote platform independence (Vaughan, Gerkey, & Howard

2003), distributed software development to loosen the coupling between different

modules (Collett, MacDonald, & Gerkey 2005) and making use of other available

open source libraries. However, proprietary simulators such as the ADAMS package

(Fraczek & Morecki 1999) and Envision (P. Aarnio, Koskinen, & Salmi 2000) are

also used.

Use of simulators is nowadays vital when developing mobile robots. There are

several reasons for this. One advantage is that when the architecture of the robot is

selected, simulators can be used to emulate the sensor information, making it

7

possible to program the control code when the actual robot does not yet exist. A

second advantage is that the robustness of the control system can be tested with

several different environments. Furthermore, since testing time with the actual robot

is limited, simulators can be used to enhance the parallel development of systems.

Using simulators can greatly reduce the cost and effort in building mobile robots.

There are several papers that describe this, for example MIT's DARPA Urban

Challenge team used two different simulators when creating their competition

vehicle, as described in (Leonard et al. 2007).

 2.1.1 SimMechanics

SimMechanics is a commercial tool for simulating mechanical systems. It is an

extension of Matlabs Simulink software. Its key features are ease of use and

integrability to existing Simulink block diagrams. Mechanical systems (linear and

nonlinear) can be modeled with SimMechanics blocks that can be connected to

Simulink blocks. CAD models can also be directly translated to function blocks by

using separate software. SimMechanics also offers Matlabs powerful mathematical

tools, such as integration and optimization. Furthermore other Matlab extensions,

such as the Real-Time Toolkit can be integrated into the development environment.

The drawback of this software for mobile robotics is that there is no built-in collision

detection, but the user must take care of this. The system also offers automatic C-

code generation.

 2.1.2 Vortex

The Vortex simulation toolkit, developed by CMLabs Software, is a proprietary

development platform that offers physically accurate modeling of ground vehicles,

soil, terrain, and other real-world objects. It has a C++ API and integrated 3D-

graphics utility. It also supports geometric collision detection. The software has been

used for example in developing training simulators for tower cranes, deep sea

remotely operated vehicles and explosive ordnance device robots by EADS. It has

also received an award by the Military Training Technology magazine. Vortex is

targeted to the market segment in which real-time performance is more important

than high-fidelity physics modeling. Robot systems are developed using fundamental

building blocks, such as cuboids and spheres. Sensors and Actuators are then

incorporated into the system, making it possible to interact with the environment and

receive data from it.

8

 2.1.3 The P/S/G simulator project

The Player/Stage simulator has been cited as the de-facto standard in the open source

robotics community. Its design goals are platform independence, enhanced

scalability, development process simplification, real-time performance, integration

with existing infrastructure, promotion of software reuse, programming language

independence and transport independence (Collett, MacDonald, & Gerkey 2005).

Player

The original Player simulator is a network-oriented architecture that abstracted

physical robot properties by using:

• Character device model

Popularized by *nix1 systems, abstracts all I/O devices as data files. Data can

be collected from a device by reading and sent to the device by writing a file.

In Player, robot sensors can be accessed by reading them, and actuators

manipulated by writing to them.

• The interface/driver model

As the character device model defines only the semantics of the devices but

not the data formats, an additional model is needed. This determines the

content of the streams and provides device independence, yielding portable

code.

• The client/server model

This abstraction provides a way to implement a robot interface. Player user's

control program, the client, is separated by a standardized medium (TCP

socket) from the server, which executes low-level device control. This yields

language-neutrality as the client can be written using any programming

language that can support the communication medium (Vaughan, Gerkey, &

Howard 2003).

Stage

The Stage (2D) multiple robot simulator ”simulates a population of mobile robots,

sensors and environmental objects”. The Stage was built to experiment with swarms

of several robots that would be expensive to purchase and maintain. The multi-robot

system simulation is designed to be achieved by:

1 Unix, Linux, Solaris, etc.

9

• “Good enough” fidelity

Computationally cheap models of devices rather than ideal emulation.

• Linear scaling with population

Sensor models use algorithms that are independent of population size.

• Configurable, composable device models

• Various sensor and actuator models are provided and they are sufficiently

flexible.

• Player interface

All sensor and actuator models are available through Player's interfaces.

Although there is no guarantee that robot behavior in Stage is comparable with that

of real robots, users have found that software developed with Stage works with “little

or no modification with the real robots and vice versa”. (Gerkey, Vaughan, &

Howard 2003)

Gazebo

The Gazebo software brings 3D-capability to the simulator package. Whereas 2D is

generally sufficient in simulations that include indoor robots, a three dimensional

simulator is needed when outdoor mobile robots are concerned. Gazebo is designed

to accurately reproduce the dynamic environments which a robot may encounter.

Simulated objects have a mass, velocity and numerous other attributes that contribute

to realistic interaction with the environment. Therefore these objects can be pushed,

pulled, carried, etc. The architecture of Gazebo is based on the idea that it should be

easy to create new robots, actuators, sensors, and other objects. The general structure

of Gazebo components is shown in illustration 2. It incorporates two external

libraries, namely ODE for rigid body dynamics and collision modeling, and

OpenGL/GLUT for visualization. Simulator development is simplified by the use of

these external libraries and internal abstraction also makes it possible to replace them

if better alternatives become available. Gazebo interfaces with Player in the same

way that Stage does. The Player device server treats Gazebo in the same way as all

devices capable of sending and receiving data (Koenig & Howard 2004)

10

Gazebo also has a number of significant limitations that make it unsuitable for some

tasks. The most important limitations are the lack of soil/surface modeling, non-

deformable objects and missing fluid/thermal dynamics. As a technical aspect,

distributed computing is not available in Gazebo due to its monolithic physics

engine. (Koenig & Howard 2004)

It should also be noted that the software is not yet in version 1.0 maturity. The

current version number is 0.10, released 1 July 2008.

 2.1.4 WebOts

WebOts is a commercial mobile robot simulation software designed to be used at

robotics research and teaching institutes. WebOts uses ODE as a physics engine and

its main features include:

• Sensor and actuator libraries

• Ready-made models for several robots

• C, C++ and Java interfaces, plus a TCP/IP interface

• Simulation of multi-agent systems with local and global communication

systems. (Michel 2004).

WebOts is primarily meant for developing cross-platform, easily implementable

robot source code for ready-made and custom robots.

Illustration 2: Gazebo components.

11

 2.1.5 Digital Spaces

Digital Spaces is an open source immersive multimedia presentation and simulation

engine programmed in C++. It uses ODE as a physics engine and OGRE (Object-

Oriented Graphics Rendering Engine) for visualization. It is designed to be used in

the Microsoft Windows operating system and is currently at version 0.10 maturity.

 2.2 Planetary rover simulators

This section presents an overview of different planetary rover simulators used today.

It starts with a description of the rationale of usage of these simulators and then

presents the simulators in detail.

The necessity of advanced simulation software in space applications is obvious.

Currently simulators are used in all fields of engineering, and space engineering is no

exception.

In the conceptual study and preliminary analysis phase, simulators can be used

extensively to test different designs without the inherent cost of building prototypes.

By building a spacecraft model and testing it in the simulator, all different design

possibilities can easily be tested. Spacecraft response to commands can also be tested

by using operator-in-the-loop simulations.

In the design, development and testing phase simulators serve in different roles.

When hardware and software choices are made the simulated components can be left

out of the model and the actual component response can be tested using hardware-in-

the-loop simulations. When the spacecraft concept is ready, the onboard software

functionality can be tested with just the sensors connected to the simulator. The

response of the spacecraft to artificial stimuli can thus easily be tested.

In the operations phase the commands that are about to be transmitted to the satellite

can be transmitted to a simulator first, confirming the correctness of the commands

and verifying that the desired reaction is produced in the spacecraft. This reduces the

chance of a mission loss due to, for example, a typing error in the spacecraft control

commands.

If, however, something goes wrong and the mission is lost, simulators provide a good

way to analyze the reasons even when very little data is available from the actual

mission. A good example of this is the analysis of the failure of the Mars Global

12

Surveyor satellite. The last communication with the satellite occurred in November

2006, after which the mission was deemed lost. The decisive event was two high-

gain antenna direction commands “commanded with slightly different (operator

input) precision”. This led to a catastrophic chain of events that eventually caused the

mission to fail. (NASA 2007)

By simulating the commands the engineers were able to determine the events very

accurately, yielding several findings in operational procedures and processes,

spacecraft design weaknesses and lifetime management considerations that can now

be taken into account when designing future missions.

 2.2.1 ROAMS

ROAMS is a real-time physics-based simulator for planetary surface exploration

rovers. It is designed to provide a virtual testing ground for rover navigation,

mechanical, electrical, sensor, power and control subsystems. It can be used for both

operator-in-line and off-line subsystems since it is based on the DARTS/DSHELL

framework. Rover subsystems and the base model have been developed using the

Rocky-7 Mars rover prototype. For example, a novel kinematics solution has been

developed using constrained optimization to be used in driving on Mars-like terrains.

Some pre-existing model libraries, such as the solar panels and batteries, could be

reused from the DARTS/DSHELL framework. The simulator has also been used to

simulate a planning system for a rover swarm, three rovers working together to

perform complex tasks. (Yen, A. Jain, & Balaram 1999)

To test the rover's on-board software it is set to run in a Unix real-time system.

ROAMS creates the simulated sensor input to the software, which in turn computes a

Illustration 3: ROAMS screen shot.

13

sequence of way-points using its navigation and collision avoidance systems. The

resulting wheel-motor and steering motor commands are then passed to ROAMS

which approximates the next position of the rover and solves the inverse kinematics

for the configuration of the rover. Then the next set of sensor inputs is passed to the

rover software. With this method the stability and robustness of the software can be

qualitatively measured. (Yen, A. Jain, & Balaram 1999)

ROAMS is generally used to model 6-wheeled rovers using rocker-bogey suspension

with variable numbers of steerable wheels. Whereas the DARTS framework

provides the kinematic solution for general multi-body topologies, several specific

models are needed by ROAMS. These include wheel sliding, slipping and sinkage as

well as terrain feature (smooth, piecewise-smooth, nonlinear) approximations. Once

the contact force has been determined, DARTS/DSHELL can be used to determine

the rover state. (A. Jain et al. 2003)

Currently, ROAMS is being developed under the following design goals (A. Jain et

al. 2004):

• Validated physics based models

High fidelity to support closed-loop testing. This requires the development of

good quality mechanical, actuator, sensor and environmental models.

• Model configurability

Rover configuration can evolve considerably during the design phase. The

simulator has to be versatile enough to allow users to configure model data

files easily.

• Closed-loop simulations

The simulator has to be embeddable to an environment consisting of a

mixture of on-board software, real and simulated hardware. This also raises

performance considerations as the simulation must be able to run in real-time.

• Layered toolkit approach

The simulator should provide a good level of instrumentation and features in

order to be useful. A layered design in which several modules are provided as

plug-ins is adopted to avoid the code size and external dependency explosion.

This also promotes code reuse.

• Spacecraft simulation framework

The simulator is built upon an existing DARTS/DSHELL framework. This

enables the developers to focus on rover-specific extensions and make their

14

contributions usable by all projects sharing the same infrastructure. A case

example of this is the DSENDS entry simulator which is based on the above-

mentioned framework and also uses ROAMS dynamic simulation and terrain

modeling libraries.

• Open source tools

The simulator development emphasizes the use of open source software

whenever possible. This has led to inclusion of several libraries and tools into

the simulator.

• Usable

Simulator is developed with the user in mind, providing several user

interfaces and reducing the learning curve.

ROAMS can be run in several different modes, including stand-alone mode that

provides a Tcl command line interface for user-simulation interaction, and a C++

interface to allow rover software to interact with ROAMS. The whole simulator can

also be run as a Matlab S-function block so that it can be integrated into larger

simulations. The ground contact computations are made by using the SWIFT++

library. To reduce computation time, only a small patch of ground underneath the

rover is used for calculating the possible contact points. As the rover moves, these

patches are created and destroyed. ROAMS can also be used to estimate kinematic

parameter dependencies using the Monte Carlo method. This capability is inherited

from the DARTS/DSHELL framework. (A. Jain et al. 2003)

 2.2.2 RCAST

RCAST is a rover chassis and analysis computer simulation which couples a rigid

multi-body dynamics engine (Matlab's SimMechanics) together with AESCO's Soft

Soil Tire Model (AS2TM) terramechanics module to study locomotion performance.

Illustration 4: RCAST architecture.

15

It has been developed for phase A studies of the ExoMars rover. The rover model is

defined using CAD models from SolidWorks or ProEng. This simulator has been

developed to support rover chassis design and optimization, and the model has been

verified using various scenarios including slope climbing. Since wheel walking is a

novel concept in planetary rovers, it has to be simulated in an early phase of chassis

development. Simulation results showed that “wheel walking can enable the rover to

climb slopes which are significantly steeper than that achieved by actuating all wheel

motors and attempting to drive straight up a slope”. (Bauer, Leung, & Barfoot 2005)

It was also necessary to validate the simulation results using wheel-soil interaction

experiments. A testbed was constructed and the results were compared with a single

wheel simulator. The test setup was used to measure interaction forces and torques as

a function of the slip ratio. These measurements confirmed the validity of the

simulation and also yielded soil parameters that could be used to tune the simulation

of the rover chassis. To fully validate the simulation, a testbed for the full rover

chassis will be required. (Bauer, Leung, & Barfoot 2005)

 2.2.3 RCET

RCET is a set of tools to support design, selection and optimization of exploration

rovers in Europe. The goal is that RCET will enable accurate predictions and

characterizations of rover performance as related to the locomotion subsystem.

RCET is designed to be a database-driven application to simulate rovers, augmented

with two hardware testbeds. RCET will also incorporate a set of parametric tools to

allow design and simulation of rovers in a short time. Parametric tools consist mainly

of a 2D-simulator to help deciding in the first-order trade-offs. After this the 3D-

simulator will be used for validating the rover concept. The testbeds are similar to

those used in RCAST, one for single wheel testing and one for verifying simulations

using a complete chassis prototype. (Michaud et al. 2004) As a matter of fact, RCET

would have been used for ExoMars simulations had it been ready when the

conceptual study began. (Bauer, Leung, & Barfoot 2005)

The central piece of the simulator architecture is a database. It makes report

generation easy and allows easy data comparison between the real measurements and

simulation. RCET, like RCAST, is a simulator to study motion control of wheeled

rovers. It is developed precisely for this purpose to allow fast prototyping at the early

design phases and also to make it possible to make quantitative analysis suitable for

16

concept validation. (Michaud et al. 2004)

Using RCET, researchers were able to compare two chassis models on a key metrics,

including drawbar pull as a function of wheel slippage and friction coefficient while

climbing over rocks. The metrics were first simulated, then validated using the

testbeds. This led to a conclusion that “there is less difference in terms of

performances between two different rover chassis than between the same architecture

with different internal dimension”. Simulations can yield such valuable information

that the design team can then use to justify their trade-offs. (Michaud et al. n.d.)

 2.2.4 RPET

This software consists of two main modules, Rover Mobility Performance Evaluation

Tool (RMPET) and Mobility Synthesis (MobSyn). It is a simple, user friendly and

accurate tool to perform preliminary analysis for the configuration of planetary

rovers. (Patel et al. 2004)

RMPET

This tool is used within the RPET to compute the mobility performance parameters

and the Mean Free Path (MFP) depending on the type of the locomotion system

(wheeled, tracked or legged) and soil (martial, lunar, terrestrial or user defined). The

mobility performance parameters include (Patel, A. Ellery, Allouis, Sweeting, & L.

Richter 2004):

• Soil Shear Strength, which determines the maximum shear stress the soil can

resist.

• Soil Thrust is the maximum tractive effort the soil can provide.

• Soil Slip is the difference between the vehicle's translational velocity and the

rotational velocity of the wheel/track.

• Motion Resistances are forces acting in opposition to the soil thrust, caused

by soil compaction due to sinkage, bulldozing and gravitational resistance.

• Drawbar Pull is the difference between soil thrust and motion resistance. It is

the “most important value in the development of a vehicle as it defines the

ability of a vehicle to traverse over a specified terrain. In order for a vehicle

to negotiate terrain it must have a positive Drawbar Pull”(ibid).

The MFP defines the expected distance the vehicle can move in a straight line before

it encounters an obstacle it cannot negotiate. This can be expressed in units of vehicle

17

scale, for example turning circle diameter. Then a large MFP can be interpreted as

the vehicle's ability to traverse in the terrain. A small MFP means that the terrain is

impassable.

MobSyn (Mobillity Synthesis)

MobSyn is used in the RPET simulation software to compute the configuration

equations for the chosen locomotion type and to yield the ideal wheel/track width

and wheel diameter for the desired performance. These calculations are made on the

basis of motion resistances, power/torque availability, terrain, etc. that are inputs to

the system.

 2.3 Related Frameworks

This section provides a short overview of the different frameworks used in the

mobile robot and planetary rover simulators. These frameworks form the core of

these simulators, and so their performance characteristics ultimately define the

usability of the tools developed on top of them.

 2.3.1 DARTS

DARTS is a high fidelity, flexible multi-body dynamics simulator that is used for

real-time hardware-in-the-loop design, testing and integration of spacecraft software.

DARTS is written in ANSI C and developed by Jet Propulsion Laboratory of NASA.

It uses SOA mathematical framework for solving multi-body dynamics. Its flexibility

is demonstrated by its extensive use in NASA applications and also by totally

unrelated projects, such as the solving the dynamics of large-scale molecular systems

in the NEIMO software project (A. Jain n.d.).

DARTS won the NASA software of the Year award in 1997 as a technology enabler,

and for saving over 10 million dollars on NASA missions. It has been used on the

Cassini, Galileo, Mars Pathfinder, Stardust, New Millennium, and Neptune Orbiter

projects (Curto n.d.).

The system takes a text input file that is read at runtime and specifies the bodies that

make up the spacecraft and the hinges that connect them. The bodies are connected

as a tree topology, with the root of the tree as base and different parts as nodes.

Because the model data is not hard-coded it is possible to construct models easily for

different missions. Models can also be changed without recompiling the source code

(Biesiadecki, A. Jain, & James 1997).

18

 2.3.2 DSHELL (DARTS Shell)

DSHELL is a C++ model library for DARTS. It is portable from desktops to real-

time hardware-in-the-loop simulation environments. It includes libraries of several

hardware models, for example sensors, motors and encoders. The library includes

extensive instrumentation so that the user has high visibility into the simulation,

yielding high effectiveness as a design, development and testing tool. Actuator

models interface directly with the DARTS simulator, for example by applying forces

to model nodes (thrusters), or attaining information from the node (sensors). Motors

can be attached to the hinges to move the bodies that are connected by that hinge.

DSHELL was also been used as a basis for the Cassini High Speed Simulator (HSS)

which will be used to test command sequences prior to uplink (Biesiadecki et al.

1997).

 2.3.3 ODE

Open Dynamics Engine is a free rigid body dynamics library with collision detection.

It is currently used in the majority of commercial and open source robot simulators

and games, the developers reporting over 1000 applications. It is quoted to be fast,

robust and stable when simulating articulated rigid body dynamics with hard

contacts. The ODE collision engine can also be replaced with other options (such as

the Bullet) if the user deems this necessary. ODE uses first order integration for

speed and stability. This, however, means that ODE is not accurate enough for

quantitative engineering. (Smith n.d.)

Illustration 5: Data flow in a DSHELL simulation.

19

 2.4 Conclusions

Mobile robot or planetary rover simulator structure depends highly on the planned

usage of the simulator. Normal mobile robot simulators tend to be more general

whereas planetary rover simulators can be programmed for very specific tasks, such

as determining optimal wheel diameter or axle length. As with other software, best

practices still remain rather uniform regardless of software type. The general

structure of a simulator is presented in illustration 6.

Object-orientedness, modularity, scalability, platform independence and open source

paradigms tend to create software that is both extensible and flexible.

An issue that is in focus in planetary rover simulator development is the wheel-soil

interaction. This is understandable as alien planets are very hostile environments for

robots and even a small error can cause a mission to fail. On the other hand, this is a

feature that is completely lacking from terrestrial mobile robot simulators. This is

probably because earlier mobile robots tended to move inside buildings, and

autonomous outdoor robots are still relatively rare. Including the wheel-soil

interaction in a terrestrial robot simulator would yield a novel software. A feature

that can be found in most of the terrestrial simulators is the possibility to genuinely

Illustration 6: General mobile robot
simulator structure.

20

interact with the environment. This is not included in the planetary rover simulators

as it has not yet been part of mission parameters to move rocks etc.

It is also a feature in the simulators to have a distinct physics/collision library. The

benefit of this is that the library can be independently developed and even replaced if

a better alternative appears. Furthermore, storing the information in a database makes

report generation and simulation validation easier. Models should be input in a

standardized, human-readable format without a need for software recompilation. It is

also imperative that the software is user friendly and provides information at a level

that is detailed enough to support the user's research. This means that individual

forces/torques/voltages/etc. should be easily observable.

Thus, it is possible to form a list of features that identifies a good quality mobile

robot simulator:

• On target

The software should be developed with the end user in mind, taking into

account his needs and wishes.

• Open Source

Open source software brings many great advantages. First of all, the code is

verifiable by members of the scientific community and thus gives more

credibility to the tool. Secondly, it is possible to use some of the vast amount

of open source libraries available.

• Modular

Modular code makes it possible to use the best libraries available and change

them if necessary; it also promotes code reuse.

• Flexible

The software modules should be as flexible as possible, as this encourages

other developers to contribute to the code and also improves the general

quality of the code.

21

• Parametrized

Good quality software enables the user to make changes in the way the

software operates without the need for recompiling the program. This can be

achieved by placing as many program parameters to human readable text files

as possible.

• Platform independent

A good quality code should be programmed so that it can be run on different

platforms.

• Real-time ready

It should be possible to run the simulator in real time with operator-in-loop.

• Connected to actual hardware

It should be possible to connect the simulator to real robot equipment to make

hardware-in-the-loop simulations possible.

• Verifiable

The accuracy of the simulator must be stated.

22

 3 SimPartner Framework
This chapter presents a description of the SimPartner framework which is the central

element of this thesis. A framework means a re-usable software system that consists

of libraries, definition files, and so on, used to solve a complex problem. Its

development was driven by the research presented in the previous chapters. The

detailed structure of the software framework is illustrated in a UML sketch that can

be found in appendix 2.

The first section is an overview of the SimPartner itself, followed by a description of

the physics library. The third section introduces the database, followed by the

environment definition method. After this, the robot, sensors and actuators are

described. The eight section introduces the window manager subsystem, followed by

robot modelling and the clients used to control the robot.

 3.1 Overview

SimPartner is an object-oriented dynamic robot simulator which combines several

existing open source libraries and technologies to create a versatile simulator

framework. The open source projects included are:

● Open Dynamics Engine.

● Boost, peer-reviewed, portable C++-libraries that are becoming a part of the

future C++ standard. The Boost libraries used include:

• UBLAS – Basic Linear Algebra.

• PO – Program Options, enhance command line and text file parameter

usage.

• Graph – Node and vertex graph implementation.

• Lexical Cast – Lexical casting of characters to numbers and vice versa.

• Pointer Vector – A convenient way to store objects.

• Asio – Asynchronous input/output, contains an implementation of tcp/ip

communication protocol.

● libxml/libxml++, XML parser.

● MySQL++, C++ wrapper for MySQL 's C API.

23

● SDL, a multimedia library that provides low level access to audio, keyboard,

mouse, joystick and 3D hardware using

• OpenGL, high performance graphics library.

• GLU, OpenGL Utility Library.

• GLUT, OpenGL Utility Toolkit.

● MySQL Database, the world's most popular open source database.

A detailed table of library versions can be found in appendix 3. SimPartner features a

modularized design that allows the user to change parts of the code without having to

reprogram the whole framework. This modularized structure is general practice in

software engineering and can also be seen in the cases shown earlier. The modules in

SimPartner are:

● SimPartner Main

SimPartner main program creates the executable application. Reads in

simulation parameters from the properties file. Handles communication

between the different modules of the framework.

● XML Parser

Receives the files containing the environment and robot specifications from

the main program. Validates the files against the DTD provided. Parses the

simulation world specifications (gravity, surface plane) and the environment

and robot bodies, joints, etc.

Illustration 7: Modularized structure of
SimPartner.

24

● ODE Model

Encapsulates the ODE in classes. Handles communication between the

SimPartner framework and the Open Dynamics Engine. Keeps the internal

storage of the bodies pose, velocities, etc. ODE models of sensors and

actuators also include an implementation of the TCP/IP communication stack

that allows the user to control the robot and monitor it's state through an

external software.

● Window Manager

Shows the simulation results to the user using OpenGL graphics library.

Receives input from the user through the keyboard and passes the user

commands on to the main program.

● Control software

Modeled robots can be controlled with separate control software using a

TCP/IP-based client/server architecture, explained in detail in section 3.7.

● Data analysis

The simulation data that accumulates in the database must be analysed

somehow. Due to the wide user base of the MySQL database software there

exist several ways this can be done. For details see section 3.4.2.

There is a lot of simulation data that needs to be updated for every simulation step.

This is done partially by using standard C++ data types such as arrays and vectors. A

homogeneous transformation entity is used for storing the position and orientation

information of the bodies in the simulation. A homogeneous transformation is a 4x4

matrix that stores the position and orientation of the body.

T=[R00 R01 R02 px

R10 R11 R12 py

R20 R21 R22 pz

0 0 0 1
] (1)

Orientation is stored in a 3x3 rotation matrix. This is a real special orthogonal matrix

of which the transpose is equal to its inverse and has a determinant of 1. Rotation

matrix has many useful properties and is extensively used in control theory.

25

 3.1.1 Parametrization

As shown in the literature review, a high quality simulator software should be

parametrized. This means that it should be possible to change the behavior and usage

of the simulator without the need for recompiling software. In SimPartner this

parametrization is extended to many levels. The core parameters are stored in the

properties file which can be defined in the command line when starting the software.

Thus the user can have several property files ready and use the one which is most

convenient. The default file is parameters.txt residing in the application root

directory. Parameters read from the properties file can also be overridden with

command line arguments.1

 3.2 Open Dynamics Engine details

ODE was already briefly mentioned in section 2.3.3 but for understanding its

behavior and limitations a more detailed overview is necessary. The purpose of this

section is to provide understanding of the ODE core dynamics modeling principles.

The mathematical concepts used in the modeling are presented and the resulting

capabilities and constraints are elaborated to provide understanding of ODE's

potential to model different applications. This section is based on (Smith n.d.),

comments in the engine source code, and the project wiki-page2.

 3.2.1 Bodies and geoms

ODE is a rigid body dynamics simulator. It uses two different concepts for simulating

the dynamics and collisions. A body is an object that has certain immutable

properties, such as mass and an inertia matrix. The body also stores information on

properties that change over time, such as pose and linear and angular velocities. A

body is dimensionless and for collision detection purposes we need another concept,

1 See ODE manual for the details of the parameters used in the file.
2 http://opende.sourceforge.net/wiki/index.php/Main_Page

Code example A: Part of a properties file.

dbname=simpartnerdb
dbserver=localhost
log=FALSE
logEveryStep=FALSE
environment=template.xml
stepsize=0.001
contactMaxCorrectingVel=0.2
contactSurfaceLayer=0
autoDisableFlag=TRUE
globalERP=0.2 #Common values are 0.1 ... 0.8

26

a geometry object, geom. Geoms store spatial properties for various different shapes,

such as spheres, cylinders, planes, etc. If a body is connected to a geom it moves

dynamically, following newtonian mechanics. Otherwise it is immovable, such as a

ground plane in the simulator.

 3.2.2 Joints

Joint is an object that attaches two bodies to each other with certain degrees of

freedom. The number of joints in ODE is constantly growing; when this thesis was

written there were at least fixed, prismatic (slider), hinge, ball-socket, and motor

joints. There also exists a special type of joint used for collisions which is presented

in a separate paragraph. A joint transfers force and torque between the two bodies,

making it possible to create more complex structures. A joint can also have constraint

parameters, that further limit the amount the bodies can move with respect to each

other.

Motor joints can be linear or angular, they have a special velocity and maximum

force parameters that can be used to make controllable parts in the simulation. It is

also possible to create motors that move to a specified position because the motors

store their pose wrt. the original orientation and position.

 3.2.3 The simulation loop

ODE is used with fixed time steps. For every simulation step, the same actions are

performed for all the bodies and geoms. The simple overall action sequence is

collide, step, destroy. First of all, possible collisions are culled by checking whether

Axis-Aligned Bounding Boxes (AABBs) attached to geoms intersect with each other.

After this, geoms that actually collide are connected in the contact points that create

separate contact joints.

When the collision checking is done, the ODE simulation space is integrated for one

step. Bodies in motion move and bodies that are connected with joints transfer

momentum to each other. The final step destroys the contact joints created by

collisions. After this the new information about bodies (position, velocity, forces,

etc.) is passed on and the process starts over.

27

 3.2.4 Collisions

As mentioned above, geoms that intersect generate contact points. When contact

joints are generated from these points several parameters can be introduced. For

example, maximum penetration, coulomb friction coefficients in two perpendicular

directions, bounciness and other parameters that affect the collision can be defined. A

collision is shown in illustration 8.

The amount of force which the contact joint delivers to the colliding bodies depends

on the amount of interpenetration between the geoms. This can cause simulation

instabilities if the parameters are not precisely fixed and the time step set to be in the

correct region (approximately 0.02 – 0.001 seconds per step).

 3.3 Physics engine wrapper

The ODE engine is currently in version 0.10 maturity. There are several things that

are either not implemented or not guaranteed to work stably, such as Cylinder-

Cylinder collisions and variable time-step iteration. Some of these deficiencies can

be remedied by simple workarounds or design choices. For example, a way of

combining the fixed time-step simulation with a variable-time step visualization is

shown in illustration 9. When the simulation is done this way two things are

achieved. First, ODE behaves deterministically in that the same simulations always

yield the same results if no outside input is introduced to the system. Second, lag

caused by components not directly related to the simulation (for example slow

database connections) will not affect the simulation but rather the user experience.

Illustration 8: A collision, picture source
(Smith n.d.).

28

 3.4 Database

All the necessary data obtained from the physics simulation is stored to a MySQL

database if the user so desires. The data storage is controlled with a simulator

property file entry. Storage can be done either every simulation step or every screen

refresh step. There are several reasons which justify using a database instead of a text

or a binary file. These reasons include:

1. ACID(Atomicity, Consistency, Isolation, Durability)-properties. These are

database properties that guarantee information validity at all times.

Atomicity means that if all of the tasks of a transaction are not performed, none

of them are.

Consistency means that the database will be in a correct state when transactions

begin and end. This will uphold database integrity.

Isolation means that all transactions are separate from each other. This makes

database processes serializable.

Durability means that all transactions will persist. All information will survive

a system failure or a program crash if they are committed to the database.

Illustration 9: Fixed time
step simulation with variable
time visualization.

29

2. SQL-queries

SQL provides an easy yet powerful interface to simulation data.

3. Integrability

MySQL databases can easily be integrated to several existing applications.

Simulation data can be accessed with Matlab applications locally (with separate

software), over a web interface globally or a direct network connection can be

directly made to the database, whichever way is most convenient.

Data can be stored in the database either every simulation step or every visualization

step. Storing every simulation step slows the simulation considerably and is only

used to validate the physics model in simple cases, such as falling bodies. The

structure of the SimPartner database is presented in appendix 4.

 3.4.1 Selected Tables

This section describes the database structure and the way the data is stored to the

database. The database is the main interface for the user to access the simulation

results and so it is necessary to explain clearly the way the data is stored.

Body

The body table stores information on the physical properties of the body in question,

such as the physical dimensions and the type of the the body. Furthermore, the

location of the center of mass (in body coordinates) and the inertia tensor are stored.

The inertia tensor is a 3x3 matrix that stores the moments of inertia of the body with

respect to different global frame axes. The inertia tensor is automatically calculated

for standard object types by ODE but it can also be redefined if necessary.

Pose

Pose refers to the position and orientation of a body in a given coordinate system. In

the SimPartner framework, the pose of all bodies is stored in the database. While

homogenous transformations are used internally in the software, the rotation data is

stored in axis-angle format to the database. Homogenous matrices are powerful and

easy to use when calculating rotations and translations, but they have many

redundant parameters and it is impossible to infer the pose of the object by looking at

the transformation. The axis-angle representation, however, is a virtual opposite in

30

the way that it is very easy to visualize but hard to combine mathematically.

Furthermore, in this representation the information is presented with only four

variables, whereas a rotation matrix needs nine.

The pose of a body is stored in

P=〈 position ,axis , angle〉=p , e , , where

p=[px

p y

pz
] , e=[ex

ey

ez
] . (2)

The rotation axis and angle describe the orientation of the frame with respect to the

global frame. The axis parameters are the coefficient of a (normalized) vector around

which the object is oriented. The angle parameter corresponds to the angle the object

is rotated around this vector. There exists a set of formulae to form a conversion

between a rotation matrix and the axis-angle parameters. Given a rotation matrix

R=[R11 R12 R13

R21 R22 R23

R31 R32 R33
] (3)

the rotation angle can be calculated with

=cos−1
R11R22R33−1

2
 (4)

and the rotation axis with

[e x

e y

e z
] =

1

R21−R12
2R02−R20

2R10−R01 
2 [R32−R23

R31−R31

R21−R12
] (5)

Illustration 10: Position, axis and
angle representation.

31

This transformation is singular when =0∨rad  . This singularity means that

the object frame is aligned to the global frame. If theta equals zero the rotation

matrix is an identity matrix. In this case the angle is zero and the axis can be freely

chosen. In SimPartner the a axis vector is e=[100]T . If theta equals pi it means

that the object frame is aligned with the global frame but some of the vectors are

reversed with respect to the global frame. In this case the vector is determined by

looking at the signs of the elements of the rotation matrix.

For example, if a frame is set to rotate at a constant angular velocity of

=[111]T the rotation axis is e=[± 1

3
,± 1

3
,± 1

3
]
T

. The rotation angle

grows continuously until the value reaches pi. Then the frame flips around over the

singularity and decreases back to zero.

Force and torque

The force and torque table stores information received from ODE that affects the

forces and torques applied to a body in a given simulation step through the collisions

detected. This data can be used to validate the correct operation of the physics engine

and also to monitor whether the forces exceed the material strength of the body in

question.

 3.4.2 Data analysis

For efficient control code programming, the user should be able to analyse the

accumulated simulation data easily. Fortunately, there are several ways to achieve

this due to the wide acceptance of the MySQL database software. The simplest way

to access the data is to use a SQL client where the queries can be typed and the

resulting rows can be copy-pasted to a spreadsheet program. This is the way the data

in this thesis was generally analysed.

However, there are more sophisticated ways to do the analysis. Matlab offers a wide

Code example B: Accessing the database from Matlab.

conn = database(dbname,username,
 password,driver,url);

data = fetch(conn,query);
time = cell2mat(data(:,1));
position = cell2mat(data(:,2));
plot(time,position);

32

assortment of tools suitable for simulation data analysis. Matlab also has a Database

Toolbox that can be used to convert database rows into Matlab workspace variables.

With MySQL, the toolbox can be used by installing the MySQL Connector/J driver.

MySQL Connector/J is a native Java driver that enables communication between the

database and a client software, in this case Matlab. After installing this driver the

user is able to access the data easily, as shown in code example B. This effectively

integrates all the analysis power of Matlab to the SimPartner framework. It also

demonstrates the importance of using widely accepted methods of storing data, as

integration with other software is very straightforward.

 3.5 Environment definition

The simulation environment (World) is defined using an XML file. The location and

name of this file is defined in the program properties. The XML file is also validated

against a DTD to guide the user to write conforming files that can be interpreted by

the XML parser. The structure of an environment file is:

• Surface plane

Surface plane of the simulation world is defined with four parameters a,b,c,d

that are the coefficients of the equation

a∗xb∗yc∗z=d (6)
• Gravity vector

Three components of the gravity vector of the environment g x , g y , g z .

• Collision space

Type of the ODE collision space to use. The options are (Smith n.d.):

• Simple

No collision culling, checks intersection of all pairs, O n2 complexity.

• Multi-resolution hash table space (Hash)

Uses internal data structure to record how objects are positioned in a

three-dimensional grid of cells. Intersection testing has On 

complexity.

33

• Quadtree space

Uses a pre-allocated hierarchical grid-based tree to quickly cull collision

checks. “Exceptionally quick” for large numbers of objects, no

complexity given.

• Objects

Defines the external objects of the environment. These objects form the

landscape of the simulator and can be interacted with, but they offer no sensor

data and cannot be equipped with actuators. Objects are defined by their

physical dimensions, rotational and translational velocities, and homogenous

transformation matrix. An example of a body definition can be seen in code

example C.

The XML file can store an arbitrary number of objects, thus forming the environment

in which the robot operates. Thus far, no sensors or actuators can be placed to the

Illustration 11: A maze.

Code example C: Definition of a test particle at rest at 10 m.

<object type="Body" name="TestParticle">
<mass>1</mass>
<transformation>

<T00>1</T00><T01>0</T01><T02>0</T02><T03>0</T03>
<T10>0</T10><T11>1</T11><T12>0</T12><T13>10</T13>
<T20>0</T20><T21>0</T21><T22>1</T22><T23>0</T23>

</transformation>
<translationalVelocity>

<vx>0</vx>
<vy>0</vy>
<vz>0</vz>

</translationalVelocity>
<rotationalVelocity>

<omegax>0</omegax>
<omegay>0</omegay>
<omegaz>0</omegaz>

</rotationalVelocity>
</object>

34

objects, only passive environments can be formed. Illustration 11 shows a simple

maze that consists of seven box objects, one cylinder object and a simple wheeled

robot. It is also possible to define joints between objects in the environment. The

joints are passive and are mainly included for testing purposes and building simple

joined structures.

 3.5.1 Terrain modeling with heightfield

In addition to the surface plane defined earlier, SimPartner incorporates a possibility

to model terrain features with a heightfield. If the user so desires, the heightfield can

be set to be used in the properties file. The core of the heightfield is a height value

matrix. This matrix stores the height values over a given set of index samples. Height

y in matrix position (m,n) is given by

H=[y11 ⋯ y1m

⋮ ⋱ ⋮
ym1 ⋯ ymn

] ,where m , n≥2. (7)

The heightfield uses depth and width values to store information about the size of the

field in the simulation environment. In other words a field with width w and depth d

covers an area

[
−w

2
,
w
2
] in x−direction and

[
−d
2

,
d
2
] in z−direction.

 (8)

Combining 7 and 8 it is possible to calculate the height at points defined by the field

y i
w

m−1
−

w
2

, j
d

n−1
−

d
2
=H m ,n for

i∈1m , j∈1n.
 (9)

Illustration 12: WorkPartner on a heightfield.

35

Points that reside inside the area but not at the points defined by the field are linearly

interpolated by the physics engine. Furthermore, the field offers parameters for

scaling the altitude values and setting an offset. The heightfield is thus a simple but

powerful way for the user to create a terrain with a practically unconstrained

accuracy.

 3.6 Robot definition

Robots are stored as graphs where body objects are represented as nodes and joints

as the vertices. The robot definitions are loaded from an XML file which is validated

against a DTD in the same manner as the environment definitions. This design

approach forces the user to

a) define robots in a syntactically correct manner where no essential information

is left out and

b) build robots where all parts are connected with joints and the design is

complete in the graph sense. This means that all the bodies are connected to

each other by some path and all joints are connected to two bodies.

An example of a simple robot graph is presented in illustration 13. The XML file

structure for different body types is similar to the one used to describe environments.

Added features are sensors and actuators that enable the robot to sense and interact

with its environment.

 3.7 Sensors and actuators

Sensors and actuators are the only way the user can directly control the robot when

the simulation is on-line. Sensors form a hierarchy where the base class uses a TCP

Illustration 13: Robot
graph.

36

communication protocol implementation to relay data with the client software.

Further functionality is defined in the derived class.

 3.7.1 TCP/IP communication

SimPartner uses the four first layers of the OSI model in its implementation of

sensor/actuator communication with the client software. The software itself is the

fifth, application layer. The port of the sensors and actuators is defined in the XML

file with two conditions:

1. The port number must be greater than 1024.

2. The port number must be unique.

The framework then reserves this port for the robot device model in question. The

SimPartner implementation is a server model, the communication has to be initiated

by the client software. The communication implementation uses sockets, a method of

point-to-point communication defined in RFC 147. This is a standard way of

communicating with two remote machines, but can also be used in one computer,

which is often the case with the SimPartner framework. This approach also makes it

possible for the user to program the client software with the programming language

of his choice as this approach is well documented and implementations exist for most

of the major programming languages.

 3.7.2 Sensors

Sensors are always attached to a body in the robot. The principle of the

communication protocol of the sensor is very simple. When communication is

established, the first thing the sensor does is to send its information to the client

software. The client can also send data to the sensor, this is used to define the

sensor's operational parameters. The sensor then parses the data sent by the client

Illustration 14: first layers of
the OSI model.

37

software and adjusts its behavior accordingly. The advantage of this approach is that

the client can acquire fresh sensor data easily but also use the same communication

to control the sensor. Sensors that are initially included in the SimPartner framework

are described below. Currently velocity and force sensors are not implemented but

due to the modular structure they can easily be added later.

Echo sensor

This sensor simply echoes the last input command it has received to the client. It is

usable for testing the correct operation of the server/client interface.

Position sensor

This sensor takes the coordinates of the body it is associated with from the ODE

engine and passes them to the client. It can be used for creating simple control

interfaces in the client. More advanced sensors, i.e. with noise or increasing error can

be extended from this sensor type.

Scanner sensor

A scanner sensor models a laser scanner. It has a range of 10 meters with no added

noise or bias. Eleven sensor rays are emitted from the sensor to cover an area of ± 0.1

radians of the z-axis in the z – x -plane of the body to which the sensor is attached.

The angle between two emitted rays is thus 0.02 radians. The rays are primitives in

the Open Dynamics Engine and are included in the collision detection algorithm.

When a collision between a ray and a body is detected, no forces are applied but

rather the distance between the starting point and the collision is calculated. This

makes it possible to retrieve the distance of the object from the sensor. This

information is stored in the sensor and sent to the client when queried.

 3.7.3 Actuators

Actuators can be built on top of constrained and prismatic joints. This constrained

joint uses a ball joint and a motor that both connect the body parts together and make

it possible to record its angular position with respect to the original state. It is the

possible to control this joint to move so that a desired position is reached. The joint

can also be set to revolve at a constant velocity or to deliver a desired force to the

bodies it is connected to, creating an angular motor. When the actuator is built on top

a of a prismatic joint it models a linear motor. The joint also has stops, angle values

with respect to all three axes that can be set to model the physical limitations of the

38

joint. These stops must be set within reasonable limits in joints that are controlled by

angle values, otherwise the joint may become unstable, causing the robot to oscillate

wildly.

The actuator is then modeled on top of this joint by using a structure similar to the

one used in the sensor, described above. Initially all actuators are set to a state where

the actuator tries to keep its original position and orientation with a force of 1000N

on each axis. When a command is sent to an actuator, it responds with its previous

state and records the new state if the command is recognized to be within a

predefined communications format.

Joint controller

Joint controller is a motor that controls the angular velocity of the bodies to which it

is attached. It accepts three maximum force values (in newtons) and three velocities

(in radians per second) as an input1 and sets its internal parameters accordingly. The

maximum force values reflect the greatest force per joint axis which the controller

can use to achieve the desired velocity.

Angle controller

Angle controller can be used to set a motor to a desired angle. It incorporates a PID-

controller with anti wind-up protection. The input for this controller is three

maximum force values, three angles and the values for P, I and D parameters2.

 3.8 WindowManager, visualization and control

SimPartner framework uses OpenGL to visualize the simulation to the user. OpenGL

offers platform-independent graphics functions that are designed to be versatile but

still easy to use. The terrain and the robot can be plotted in several different ways,

either as a wireframe or with solid faces. Object frames and forces affecting the

bodies can also be plotted. The camera can be controlled by freely moving it through

the space or it can be set to follow the robot.

The SDL library is used to pass commands from the user to the framework. SDL

offers a set of events generated by the keyboard, mouse or operating system. User

interaction can be achieved by programming functionality based on these events.

1 Message example: <1000,1000,100,0,0,0.2>
2 Message example: <1000,1000,100,0,0,0.1,0.5,0.1,0.1>

39

 3.9 WorkPartner model

The robot is modeled by using the latest available CAD model of the robot drawn in

1999. The configuration information and measurements were read from the model

and translated into a robot XML file described in section 3.6. Due to the complexity

of the model, the robot was modeled in different generations, which are described

further. The idea behind this design approach was to validate the correct functionality

of each design iteration before new parts were added.

 3.9.1 Generation 1

The first generation model of the robot contains the wheels and supporting structures

for the undercarriage. The wheels and other joints have simple motors that can be

used to drive the robot. The fact that the wheels of the WorkPartner robot are not

steerable causes added complexity to the steering system. The robot chassis consists

of two independent halves and has an intricate lever system that is used to split-steer

Illustration 15: WorkPartner CAD model.

Illustration 16: 1st generation model.

40

the vehicle. This means that the two halves of the robot can be adjusted to be at an

angle with respect to each other, causing it to turn when the wheels are spinning. In

the first generation model, this system is modeled with one hinge joint that can be

twisted to achieve split steering.

The model was primarily used to confirm the correct operation of the remote actuator

control over the TCP/IP system using a gamepad controller. The wheels were

controlled with a joypad where forward/backward commands increased the rotational

velocity of the wheels and left/right commands caused the central joint to turn for a

prespecified amount. Other leg joints can also be controlled to change the

configuration of the robot. This client can also be used with models of the later

generations.

 3.9.2 Generation 2

The second generation model incorporates a front support and a torso that has a laser

scanner model and a position sensor. The torso can be rotated using a simple angle

controller. This robot can sense its environment and could be used for creating crude

SLAM navigation clients. All other joints and motors are the same as in the

generation 1 model.

Illustration 17: 2nd generation model.

41

 3.9.3 Generation 3

For the third generation, manipulators are attached to the torso. The manipulators

consist of upper and lower “arms” plus a pair of claws. The part that is connected to

the torso and the lower part are connected using simple angle controllers so that the

positions of the manipulators can be controlled accurately. The wrist that connects

the claws to the arms can be turned. Both sides of the claws can also be controlled

independently of each other with three degrees of freedom.

 3.9.4 Generation 4

The actual WorkPartner robot is tilted to the left and has a power pack on the back of

the robot. So for the validation against real WorkPartner test results a more

realistically balanced model was created. It is no longer symmetrical, the torso is

shifted five centimeters to the left and the masses of the parts have been altered to

make it compatible with the actual robot. Furthermore, a rear support and a weight

have been sited to make the weight distribution resemble that of the actual robot.

Illustration 19: 4th generation model.

Illustration 18: 3rd generation model.

42

 3.10 SimPartner clients

Due to the versatile TCP/IP control structure and the standardized communication

protocol for sensors and actuators, it is easy to create different programs to control

the robot. The control methods created within the scope of this thesis are the

interactive client and the sequencer client.

 3.10.1 The interactive client

The first client developed for the SimPartner framework was the interactive gamepad

client. The test setup for this client is shown in illustration 20. The client runs on a

Linux PC and the commands are input using a game controller that is connected to

the computer's USB port. The client software transforms the commands into values

that are encapsulated into the communication protocol and transferred to the

simulator over a local network. The advantage of this approach is that it allows an

easy way to test new object/joint configurations and other types of fast prototyping.

It was also useful in the development phase of the simulator software, as changes can

be made easily and the effects observed visually.

Illustration 20: Test setup for the gamepad client.

43

 3.10.2 The sequencer client

The sequencer client takes an XML-file as input and parses it. After this it sends the

commands to the robot. The client is thus not interactive but rather meant to be used

to create complex command sequences that would be impossible to perform

accurately using the interactive client. Furthermore the sequencer client makes it

possible to run the exact same series of commands several times, for example with

different environmental parameters. The user needs only to type in a new version

number to the XML file and program the relevant parsing code to the file. See code

example D for details on sequencer client code. Version 1, which is included with the

SimPartner framework, is a simple sequencer in which commands can be sent to the

client and which has built-in pausing and repeating commands. The commands sent

will be valid until the next command arrives. For example, if a certain wheel motor

velocity is set the motor will rotate with this velocity until the new velocity is given.

Code example D: Control sequence.

<command>
<commandString>1000,1000,100,0,0,0</commandString>
<port>1028</port>

</command>
<command>

<commandString>1000,1000,0,0,0,0</commandString>
<port>1030</port>

</command>
<command>

<commandString>0,0,-0.2,0.5,0.1,0.1</commandString>
<port>1044</port>

</command>
<command>

<commandString>2</commandString>
<port>0</port>

</command>
<command>

<commandString>1000,1000,100,0,0,0</commandString>
<port>1030</port>

</command>
<command>

<commandString>1000,1000,0,0,0,0</commandString>
<port>1027</port>

</command>
<command>

<commandString>0,0,-0.2,0.5,0.1,0.1</commandString>
<port>1041</port>

</command>

44

 4 SimPartner Performance
This chapter describes the performance of the SimPartner framework by introducing

a series of tests done with it. The results are compared against mathematical models

and real test data to validate the accuracy and realism of the simulator.

 4.1 ODE accuracy

 4.1.1 Integrator

The accuracy of the Open Dynamics Engine can be verified by a series of tests that

can be compared against theoretical result values. The simplest of these tests is to

check the integrator accuracy using a test particle in free fall with earth gravity g. A

test particle was positioned to an altitude of 500 meters and the simulation was

started. The results were then compared with values computed with the formula

h t =h0−
1
2

g t 2 (10)

that describes the ideal free fall motion. The results of this test are shown in Figure 1.

It can be seen that the error increases linearly as a function of time. This is an

expected result as ODE uses 1st order Euler integration. The step size of the

simulation was 0.001 seconds and the resulting error can be described with a linear

integration error coefficient

Figure 1: Incrementing error of a body in free
fall.

0 2 4 6 8 10

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time(s)

D
iff

er
en

ce
(m

)

45

e t ∝e t∗t ,where
e t=0.00489m /s .

 (11)

When the simulation is repeated with different time step lengths as illustrated in

Figure 2, a more general error estimate can be formed. There is a linear correlation

between the integration error coefficient and the time step length. This is again an

expected result as ODE uses first order integration to solve the positions of bodies.

Integration error coefficient can be approximated with

e t  t ∝eh∗ t , where

eh=4.9050 m /s2 (12)

As can be seen, this coefficient is almost exactly half of our gravitational constant.

The magnitude of the force applied to the body also affects the error. To test this, a

free fall simulation is run with the gravitational constant value of 50. The simulation

yielded an integration error coefficient of 0.025 with time step of 0.001. This is an

expected result as it is approximately five times larger than our previous result, as is

our force. The compounding integration error can thus be approximated to be

e t ∝
F
2
∗ t. (13)

Figure 2: Effect of time step on integration error coefficient.

46

This yields the result that to keep the simulation accurate it is necessary to keep the

time steps and affecting forces as small as possible, as was expected. Also to be

noted is the fact that motion with constant velocity is simulated with near perfect

accuracy. To test this, a body was simulated with a velocity of v=10,10 ,0. The

vertical position error grows linearly as before but the horizontal position error

remains zero. This is shown in figure 3.

 4.1.2 Friction

ODE uses the Coulomb friction model. In this model two friction forces can be

defined. Tangential friction is directly proportional to the normal force and opposite

to the velocity vector. Normal friction is perpendicular to the velocity vector and can

be used to make vehicles skid in turns. It is thus assumed that the mass and contact

surface area of the object do not affect the velocity change but rather that the velocity

should decrease linearly depending only on the gravity and the friction coefficient,

following the equation

v t =v0−g t. (14)

Figure 3: Falling body with initial velocity.

0 10

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

0.0225

0.025

0.0275

x – difference
y – difference

Time

D
iff

er
en

ce
 (

m
)

Illustration 21: Coulomb
friction.

47

To assess how well ODE simulates friction, a simulation setup was constructed in

which a (1x1x1m) cube weighing 1kg is set up with an initial velocity of 10m/s.

However, an interesting behavior is observed in the simulation. The velocity error

does not grow linearly as before, but in a stepwise manner. This behavior cannot be

explained by any physical processes but rather it has to do with the implementation

of ODE. This behavior is shown in Figure 4. Most likely it is due to the fact that the

object is not sliding with constant contact points but rather bouncing slightly as the

contact forces are not evenly distributed over the contact surface. This would cause

impulses and torques acting on the object.

Figure 4: Velocity difference of a sliding cube with friction.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (s)

D
iff

er
en

ce
 (

m
/s

)

48

 4.1.3 Collision

The accuracy of the collision engine was determined by colliding two spheres with

identical mass and equal but opposite velocity vectors and starting positions. The

goal of the simulation was to create a perfectly symmetrical and elastic collision

between the two spheres. All error correction and bounciness parameters were set to

zero. Figure 5 depicts the trajectories of the spheres. It can be seen that the collision

takes place in the predicted altitude and position, with the distance of the centers of

mass being 1.0 which is equal to two times the radius of both spheres.

The collision, however, is not ideal. The velocity of sphere 1 (right) is slightly higher

than that of sphere 2. This causes the sphere to bounce back with a greater velocity

and even bounce from the ground plane. This in turn causes asymmetry in the

positions of the spheres. This behavior is illustrated in figure 6, where initially the

positions of the two spheres are perfectly symmetrical. After the spheres come in

contact with the ground plane the asymmetry starts to grow ad infinitum as the

rolling friction is not used and the velocity of the spheres is different.

Figure 5: Collision of two spheres.

49

 4.2 Robot behavior

As described in section 3.9, the robot was modeled in several different generations.

These models were also validated in parallel with the development. This section

describes the validation tests made with the models. The validation was done mostly

against mathematical models due to the fact that there exists only a limited amount of

test data on the actual robot. However, the final validation was made against the test

data (Leppänen 2007).

 4.2.1 Generation 1 – driving a circular path

The simulation was started and the robot was turned so that smallest possible turning

circle radius was achieved. The robot was then set to drive on a circular track using

the gamepad client and the body part positions stored in the database. Robot leg

position data was then extracted from the database (see appendix 5) and the robot leg

coordinates averaged to obtain the trajectory of the center of the robot. The results

were that the robot travelled a circular path with turning circle radius of 4.30 meters

shown in figure 7. The result was obtained using the friction values of 0.5 and 1.0 for

tangential and normal friction, respectively.

Figure 6: Asymmetry of the collision of two spheres.

0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

t (s)

as
ym

m
et

ry
 (

m
)

50

The geometrical center point of the robot is the turning center. Thus both wheel axes

point to the center of the circular trajectory (see illustration 22). From this symmetry

it is possible to deduce the turning radius using the sine rule and properties of

triangles. This simplified trajectory assumes that there is no skidding of the wheels

and that the steering angle stays fixed for the whole duration of the maneuvre.

Calculating the theoretical turning radius of the vehicle makes it possible to assess

and verify the simulation.

The turning radius of the robot can thus be calculated with

Figure 7: Trajectory of the robot when driving a circular
path.

-5 5

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Robot position

X (m)

Y
 (

m
)

Illustration 22: Turning
radius of a vehicle with
split steering.

51

r=
a sin−sin 

−
2



sin

2
sin 

. (15)

Which can be further simplified to

r=
acos 

1
2


sin 
1
2


= a∗cot 
1
2
. (16)

When the turning radius is calculated using (16), using the predefined steering angle

=0.2972 rad and the axle length a=0.6 m the result is 4.01 meters. The error

in turning radius is 0.29 meters or 6.7% which shows that there are significant

unidealities associated with the simulation when using the parameters described

above. The main reason for the error is the fact that the speed of the wheels cannot be

accurately controlled using the gamepad client. All the wheels are turning with the

same velocity, whereas the inner wheels should turn slower than the outer ones. This

explains the fact that the simulated trajectory has a larger radius than the calculated.

To further test the turning behavior the velocities of the wheels must be considered.

The inner wheels travel a shorter distance and since the robot does not have a

differential the velocities must be calculated manually. The distances the wheels

travel can be determined from

d i=2 r
d o=2 ra ,

 (17)

where r is the radius of the circle and a is the axle width. From this it is possible to

derive

v=
d
t

⇒v i=
2r

t
, vo=

2ra
t

v i

vo

=

2 r
t

2 ra
t

=
r

ra

vo=v i
a
r
1 , when r  a.

 (18)

To test this the turning angle is set to =0.2 rad. This corresponds to a turning

circle radius of r=5.98m. The inner wheel pair velocities are set to be

52

v i=1.00
m
s

, thus giving us the outer wheel velocity vo=1.10
m
s

.

This configuration was tested using the sequencer client and the simple angle

controller. The central joint was turned to the desired angle and the wheel motors

started. The accuracy of the simulation improved dramatically.

The simulation lasted for nearly two minutes, generating over 346 000 rows in the

database. This means that there is a large amount of data that can be analyzed to

verify the simulation. First, the path of the center of mass of the robot was calculated

as above. The trajectory was very close to the estimated one, generating a circle with

a radius of 5.9516 meters and a radius error of 2.8 cm or 0.5%. The center point of

the fitted circle is (-0.0292,-5.9512) and so the error is also about the same in this

respect.

Figure 9 shows the error compared to the fitted circle as a function of time. The error

is large at the beginning as the vehicle is only turning its central joint and is not yet

travelling in the desired trajectory. The error then decreases for some time until it

starts to increase again. A slight oscillation can also be detected. It can be noted that

the accuracy is very good and the track remains circular up to within one millimeter

throughout the whole simulation.

Figure 8: Circle fitted to the data points of the trajectory.

53

 4.2.2 Generation 2 – a moving laser scanner

The second generation robot model includes a torso with a simple laser scanner and a

position sensor. The torso of the robot is turned with a constant angular velocity of

=0.01
rad
s

The simulation environment has a wall set at a distance of six meters

from the robot center, which gives L=5.335m from the scanner.

Figures 29 and 30 in appendix 6 show the sensor readings while the robot is turning.

Sensor rays that are pointing away from the turning direction show first a decrease in

the measured distance, then the distance starts to increase. The rays that point

Figure 9: Error as a function of time in a circular trajectory

Illustration 23: A moving laser
scanner.

54

towards the turning direction show a steady increase in the distance, which is

expected. In the situation described above the distance measurement can be

calculated with

d=
L

cos
=

L
cos 0− t 

. (19)

The sensor error behavior is shown in figure 10. After an initial jitter, the error grows

linearly. This is consistent with the integrator error of the ODE and offers an insight

to the best possible accuracy that any ODE sensor can achieve. The error levels are

also proportional to the distance to be measured, meaning that the longer the

distance, the greater will be the relative error.

 4.2.3 Generation 3 – Manipulator

In this generation, the WorkPartner model includes all the essential parts of the actual

robot. The first validation done to this model was a test in which the robot advanced

towards a pole held on the top of two cubes. The robot then picked up the pole,

advanced towards another pair of cubes and laid down the pole smoothly so that it

remained on top of the other pair of cubes. This validated the ability of the simulated

robot to perform a complex task.

Figure 10: Distance scanner sensor error.

0 5 10 15 20 25
0.00000

0.00003

0.00005

0.00008

0.00010

0.00013

0.00015

0.00018

0.00020

Sensor errors

Error 1

Error 2

Error 3

Error 4

Error 5

Error 6

Error 7

Error 8

Error 9

Error 10

Error 11

T (s)

E
rr

or
 (

%
)

55

The sequencer client was used for this simulation. The command sequence was

completely passive, no sensor data was used to guide the robot. In practice this

means that the command sequence was done in steps, with motor on/off commands

and pauses. The command sequence was

● Simulation start.

● Open claws, raise and twist the manipulators so that the claws are aligned

correctly. Turn wheel motors on.

● Drive for a specified amount of time, then turn wheel motors off.

● Close claws.

● Raise manipulators.

● Wheel motors on.

● Drive for a specified amount of time, then turn wheel motors off.

● Lower the manipulators

● Open the claws

● Wait for a specified amount time to allow the pole to stop moving.

● Wheel motors on backwards

The purpose of this validation was to prove that SimPartner is able to perform

complex task sequences and that the robot performs well. A more advanced version

of this task could be done using a client that would have sensors and the commands

Illustration 24: Action sequence.

56

would be calculated from the actual position/environment data. This would reduce

the development time of the control code and increase the accuracy of the robot.

Force measurements were also recorded during the simulation. Figure 11 shows the

sum of the forces in the y-direction or opposite the gravity vector (see appendix 5).

During the time interval of 10 – 25 seconds the robot is moving and picking up the

pole weighing 48.9 newtons (mass 5 kg). This can be seen as noise and oscillations

in the graph. At 25 seconds the pole is held by the robot, which causes a level

increase in the total load. At approximately 45 seconds in the simulation, the robot

lowers the pole back on the supporting pylons, after which the robot backs off.

An interesting detail in the wheel forces can be seen when individual wheel forces

are plotted instead of the sum. Wheels one and two (on the positive side of the x-

axis, or in front of the robot) carry a substantially larger amount of the weight of the

robot than wheels three and four. This can be explained by the geometry of the robot;

the torso and its support structures make the front end significantly heavier. The

difference is about 2 to 1, or 700 N and 350 N per wheel in each pair. This agrees

with the fact that the front support and torso structure mass was set to be 51

kilograms when the whole weight of the robot was 202 kg. The behavior is illustrated

in Figure 12.

Figure 11: Sum of the wheel forces.

0 25 50 75 100 125 150
1450

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

Time (s)

F
 (

N
)

57

Actually, this behavior has been observed in the WorkPartner robot. The robot is

powered by a gasoline engine and batteries which are placed on the rear part of the

robot to improve stability by acting as a counterweight for the long manipulators.

The weight of the pole also appears to be carried mainly by wheels one and two.

Furthermore the forces on wheels three and four decreases when the pole is grabbed

this is explained by the fact that the pole actually causes the whole robot to tilt,

further decreasing the load on the rear wheel pair.

 4.3 Use case – control code development

The next validation is to verify that the control code can be developed using the

SimPartner framework. The scenario is that the robot is placed on a very slippery

surface (= 0.025) and the goal is to make the robot move as fast as possible. Theμ

assumption is that it is possible to use wheel walking to make the robot move with a

greater velocity.

Due to the great forces that take place in the rolling walking movement, a 1st

generation robot model was used. It was observed that trying to achieve rolling

walking directly in the way it is done in the WorkPartner (see section 4.3.3) causes

simulation instabilities. Therefore, the code development was performed in stages as

shown in the following paragraphs. The mass of the robot in this simulation is 18 kg,

which corresponds to a weight of 176 N.

Figure 12: Forces affecting each wheel in the third generation simulation.

0 25 50 75 100 125 150
150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

Wheel 1

Wheel 2

Wheel 3

Wheel 4

Time (s)

F
 (

N
)

58

 4.3.1 Movement by rotation of skidding wheels

The initial setup is simply to set the rotational velocity of the wheels to be one radian

per second, which will cause the robot to move slowly as the wheels are mainly

skidding and only partly moving the robot forward. The motion data is retrieved

from the database and the average velocity of the center of mass is calculated to be

0.0038 meters per second (see appendix 5). The velocity without skidding would be

0.235 meters per second, so it can be seen that the speed is severely reduced by the

skidding of the wheels. The y-position stays very steady, as would be expected. This

can also be seen in the wheel forces, shown in figure 14 (for wheel number reference

to geometry, see figure 19). Despite the small high frequency oscillation, caused by

the numerical inaccuracies of the simulation, the forces are in the correct range since

the ideal force would be 44 newtons per wheel.

Figure 13: Robot CoM position with skidding wheels.

0 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X

Y

Time (s)

P
os

iti
on

 (m
)

Figure 14: Wheel forces in skidding wheel movement.

59

 4.3.2 Caterpillar movement

The next improvement was to use the robot “knee” joints. The simplest way to

achieve this is to use caterpillar-like movement. The motion sequence is as follows:

1. Rear wheels are locked and front wheels set in free rotation. Rear legs are

then pushed back and front wheels forward.

2. Rear wheels are unlocked and front wheels locked

3. Rear and front wheels are brought back under the robot.

This approach gave great increase to the velocity of the robot. The movement is

fairly smooth and natural looking. There is a slight oscillation in the turner joint y-

position (amplitude 1 cm). The average velocity during the course of the simulation

increased dramatically, to 0.057 meters per second. The behavior of the wheel forces

is entirely different, shown in figure 16.

Wheels one and two are in the front. The large oscillation, with the other side

carrying most of the weight of the vehicle, is caused by the contact approximation of

the simulator that causes the entire chassis to rock slightly in this locomotion mode.

There is still a significant difference in the load distribution between wheels one and

four on the right side of the robot and wheels two and three on the left. The

caterpillar locomotion causes load variation in the order of 15-20 newtons per wheel

in the course of the simulation.

Figure 15: Robot CoM position with caterpillar
locomotion.

0 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

X

Y

Time (s)

P
os

iti
on

 (m
)

60

 4.3.3 Rolling Walking

Next, a rolling walking (rolking) simulation was developed. The development is

based on a video1 which describes this locomotion type. The rolling walking

sequence is based on the idea that the joint motors are used to move the robot with

the wheel motors assisting in the movement. During the movement the wheel of the

moving leg is assisting the movement by rotating and the other wheels are kept

unlocked.

The motion sequence is (for a visual representation, see appendix 7):

1. Initial state: Left legs move backward, right legs forward.

2. Left rear leg moves forward and right rear leg is allowed to move passively

to a backward position.

3. Left front leg moves forward and right front leg is allowed to move passively

to a backward position. Now the robot is in a configuration that is a mirror

image of the initial state.

1 http://automation.tkk.fi/files/workpartner/newrolking.mpg

Figure 16: Wheel forces in caterpillar locomotion.

61

4. Right rear leg moves forward and left rear leg is allowed to move passively to

a backward position.

5. Right front leg moves forward and left front leg is allowed to move passively

to a backward position. The robot is now in the initial state.

Figure 17 shows the motion of the robot with this locomotion scheme. The simulator

is currently slightly unideal for this locomotion as the rolling friction is incompletely

modeled (see section 4.5.5). The velocity of the robot is 0.048 meters per second,

which is slightly slower than in the previous simulation. The wheel forces are much

more dynamic in this simulation, as would be expected. This is shown in Figure 18.

Figure 17: Robot CoM position with rolling walking.

0 50

0

0.1

0.2
0.3

0.4

0.5

0.6

0.7
0.8

0.9

1

1.1
1.2

1.3

1.4

1.5

1.6

X

Y

Time (s)

P
os

iti
on

 (
m

)

Figure 18: Wheel forces in rolling walking.

62

To analyze the forces in detail, another simulation was run with one motion

sequence. The results are displayed in Figure 19.

The figure is organized so that the wheel numbers correspond to the correct locations

on the robot when viewed from above. The numbers depict the different phases of

the motion sequence. In (1) the robot is moving from the initial pose so that the

wheels on the left side move backwards and the wheels on the right forwards so that

the knee angle is 0.2 radians. After approximately 1.3 seconds the first rolling

walking action begins (2), with the rear left wheel moving forward and rear right

backwards. In this position, the robot is in a singular configuration, left legs are

pointing towards each other under the robot and right legs point outwards. This

causes the forward pointing legs one and three to bear most of the weight of the

robot. In (3) the front left wheel moves forward while the front right moves

backward. This causes the load to shift to wheels two and four.

In (4) the rear right leg moves forward, causing a small load variation. The final

movement (5) puts the robot to a configuration in which the motion sequence could

be started again. The wheel loads start to converge to be the same that in (1).

Figure 19: Wheel forces in one motion sequence.

63

Rolling walking has been simulated before. Figure 20 from (P. Aarnio 2002,

p.106) shows the wheel forces in a similar locomotion simulation to that presented

here. The scale is 200 newtons and the weight of the robot is different. The

simulation is similar to that described here. The movement that takes place in the

figure is when leg 4 is moving forward with the wheel rolling freely.

Figure 21 is an excerpt taken from the wheel force graphs that were presented earlier.

The figures show similarities between the two simulations. Before the transient the

forces increase in two of the wheels, while decreasing in the other two. After the

transient, the SimPartner force graph converges, and the original graph diverges.

Furthermore, the duration of the phenomenon is different in the simulations,

approximately 3.5 seconds in the original simulation compared to two seconds in

SimPartner. The leg numbers correspond to each other in the graphs.

The conclusion of the simulation is that the results are rather similar to the simulation

performed earlier, but it cannot be definitely said that the results are in agreement.

Therefore, it is necessary to compare the results to those obtained with the actual

robot.

 4.4 SimPartner validation

The validation was made by comparing SimPartner data to measurements performed

using the actual robot. This was achieved by running a simulation similar to that

described in Ilkka Leppänen's dissertation (Leppänen 2007). As stated before, no

detailed technical drawing of the robot is available in its dissertation configuration.

Therefore it is necessary to deduce the mass distribution of the robot from the test

data. As a basis (Leppänen 2007, p.72) states that the whole robot has a mass of 270

Figure 21: Wheel forces in SimPartner.

7 7.5 8 8.5 9 9.5 10 10.5 11

0

10

20

30

40

50

60

70

80

90

100

Wheel 1

Wheel 2

Wheel 3

Wheel 4

Time (s)

F
 (

N
)

Figure 20: Wheel forces from an earlier
simulation.

64

kilograms and that each of the legs weighs 21 kilograms.

The test data used in the validation covers four test runs over variable terrain. The

test runs are approximately 55 meters long and the durations were between 700 and

1400 seconds. Measurements were generally taken ten times per second.

 4.4.1 Model weight distribution

After tidying the force measurements from invalid values (mostly zero, sensor not

turned on) and calculating the averages we obtained the data presented in Table 1.

We can observe that there is a discrepancy between the reported mass of the robot

and the force measurements. The total average force is approximately 1900 newtons,

corresponding to a mass of 194 kilograms, the difference being 76 kilograms. The

author of the study confirmed that this is due to the positioning of the force sensors.

The wheel and parts of the leg come after the the force sensor in the kinematic chain

and are thus not visible in the measurements. The mass of the parts not shown by the

sensor is about 20 kilograms per leg, which causes the difference observed.

 Also worth noting is the considerable weight difference between the various parts.

Legs 2 and 3 have nearly equal average forces, whereas leg 1 carries a significantly

larger amount of the weight than leg 4. The author of the study also confirmed this

notion, explaining that when measured by scales, the robot is indeed tilted to the left

and front. This means that leg 1 is located at the front left and leg 4 at the front right.

It can also be deduced that leg 2 is located at the rear left and leg 3 at the rear right.

The next step is thus to modify the SimPartner model so that the weights correspond

to the measured averages plus the additional 196 newtons not shown by the

measurements. The target values for SimPartner (using previously defined wheel

numbers) are:

● Wheel 1 = 383.15 newtons + 196 newtons = 579.15 newtons.

Table 1: Force measurements from tests with the WorkPartner robot.

Average Force
Test Run Leg 1 Leg 2 Leg 3 Leg 4 Total No. of measurements

1 -591.55 -469.4 -508.82 -393.61 -1945.04 8617
2 -549.38 -432.48 -461.66 -359.36 -1784.12 12570
3 -598.81 -506.06 -476.76 -387.28 -1951.06 7412
4 -575.83 -484.52 -472.87 -392.34 -1903.9 6683

Average -578.9 -473.12 -480.03 -383.15 -1896.03
Std. Dev. 21.89 30.99 20.23 16.09 77.49

65

● Wheel 2 = 578.9 newtons + 196 newtons = 774.9 newtons.

● Wheel 3 = 473.12 newtons + 196 newtons = 669.12 newtons.

● Wheel 4 = 480.03 newtons + 196 newtons = 676.03 newtons.

A model representing these values was created (see section 3.9.4). A ten second test

run with the model yielded the following average wheel forces:

● Wheel 1 – 595.6401 newtons.

● Wheel 2 – 785.1331 newtons.

● Wheel 3 – 670.1860 newtons.

● Wheel 4 – 702.6742 newtons.

The measurements are noisy as the robot is no longer symmetrical but is rocking

slightly from side to side in the simulation. The average error compared to the mea-

surements done with the actual robots are in the range of 1 – 27 newtons, the maxi-

mum error being around 4 percent. This is acceptable for the validation.

 4.4.2 Test terrain

(Leppänen 2007, p.78) presented the height profile of the terrain used in the test runs

made with the actual robot. For our validation, we selected test run number four, in

which the terrain used has the profile shown in figure 22.

Illustration 25: Wheel forces when creating the
validation model.

66

The test runs were made outside during the winter season. This means that the

ground was snowy and uneven. The figure mentioned above only covers two

dimensions so we can only model the elevation of the ground. Furthermore, the force

measurements in the test data were rather noisy, so in order to discern features a 10-

sample sliding median filter was used with every 10th data point plotted. The filtered

test data is shown in Figure 23. The figure shows three distinct events that took place

during the drive. The first one is the WorkPartner driving down the slope just before

the 20 meter mark. The next one takes place just after the second bump. The third

one cannot be completely explained by the height graph but the referenced paper

notes that at this points some planks had been placed on the ground. This is the cause

for the third event.

Figure 22: WorkPartner test terrain.

15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

-0.175

-0.15

-0.125

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

Position (m)

H
ei

gh
t (

m
)

Figure 23: WorkPartner wheel forces during the test.

67

 4.4.3 Test velocities

When the WorkPartner robot is traversing the test track, it is using active control for

its wheels and legs for energy efficient locomotion. This behavior was not perfectly

modeled in the client software as this is not within the scope of this work. Figure 24

shows the average velocity of the robot during the test drive. It was calculated from

the filtered odometry data and time stamps obtained by Ilkka Leppänen. The events

corresponding to the high force value oscillations can clearly be seen. This data

provides the basis for the velocities in the SimPartner simulation of the test drive.

 4.4.4 Simulation velocities

After adjusting the mass distribution of the simulation model to match with the actual

robot a heightfield was created that corresponds with the terrain used in the test run

with the actual robot. The wheel velocities were then set to a constant velocity of 1.5

radians per second. The simulation ran for 104.75 seconds and the robot traversed a

total of 34.5 meters. Figure 25 shows the velocity of the simulated robot, calculated

as the average of the velocities of all body parts. It is significantly smoother than the

test run made with the actual robot due to the fact that there is no active control for

wheel velocities: the wheels try to maintain constant velocity regardless of the pose

of the robot.

Figure 24: WorkPartner velocity during the test run.

68

The velocity of the robot slows down considerably in the same positions as the

original test run. It can clearly be seen that these positions correspond to the locations

where the terrain causes the robot to slow down. The simulation is thus similar to the

actual test drive in this aspect.

 4.4.5 Simulation wheel forces

The wheel forces from the simulation are shown in Figure 26. The magnitude of the

forces is the same as in the test run with the actual robot, when taking into account

the fact that the forces measured from the simulation incorporate approximately 200

newtons of leg and wheel weight. The number of measurements in the simulation is

smaller but the spikes in the forces can clearly be seen in the same positions as in the

actual test run. The small height variations in the 30 meter range cause small force

spikes even though the planks mentioned before are not modeled. The data cannot be

compared quantitatively due to the different control algorithms, but it can be said that

the simulation resembles the actual test with an accuracy that is good enough to

validate the simulator.

Figure 25: SimPartner velocity during the simulation.

69

 4.5 Other Considerations

As stated before, ODE is not at full maturity at this point. There are still several

inconsistencies and imperfections in the physics engine that must be taken into

account. These imperfections also affect the SimPartner framework, and the user

must understand and accept these limitations until ODE matures beyond these

problems. Fortunately, depending on the type of simulation the user wants to achieve,

some of these problems can be remedied by careful tuning of the simulation

parameters.

 4.5.1 Object-object penetration

A phenomenon that can be observed, especially with box-shaped objects, is object-

object penetration. This is basically a failure in the collision detection engine and it is

Figure 26: Wheel forces in the simulation.

15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40
-1600
-1500
-1400
-1300
-1200
-1100

-1000
-900
-800
-700
-600
-500
-400
-300

-200
-100

0
100

Wheel 1

Wheel 2

Wheel 3

Wheel 4

Position (m)

F
 (

N
)

Illustration 26: Object-object
penetration.

70

inherent to fixed time-step deterministic physics engines. This interpenetration does

not occur when the collision is perpendicular and the contact surfaces are parallel.

The chance of interpenetration increases when the contact angle becomes smaller and

when the object size increases. This can be remedied by adjusting different

simulation parameters which will cause jittering in stacked objects as they never

come to rest because of the small amount of penetration and the resulting force that

tries to keep the objects apart.

 4.5.2 Object-ground penetration

Object-ground penetration is based on the same phenomenon as object-object

penetration. The main difference is that in this case the other participant of the

interpenetration is the ground plane, which defines a non-usable half-space in the

physics engine. An implication of this is that the object can come to rest in this

position as the supporting surface is calculated from the penetration points. In this

case the supporting surface is not formed by the corner points of the object but rather

by the intersection points of the ground plane and the penetrated area of the object.

This phenomenon is also most frequently seen on box type objects and it can be

remedied by adjusting the surface layer thickness parameter. Setting this higher will

prevent penetration but might also cause jittering as objects are never fully at rest.

Illustration 27: Object-ground
penetration.

71

 4.5.3 Physics engine numerical instabilities

Since there are several numerical problems that have to be solved for every

simulation step, numerical problems may sometimes occur. One example of these is

the ODE error message that appears to the console:

ODE Message 3: LCP internal error, s <= 0 (s=0.0000e+00).

LCP stands for linear complementarity problem, a linear algebra problem of finding

two vectors that satisfy a certain set of equations based on a square matrix and a

column vector. This problem is quite common in optimization, physics simulation

and mathematical programming. ODE uses a method developed by (Cottle &

Dantzig 1968) .

In ODE, the LCP error surfaces when objects collide, applying too much force for

the solver. It does not cause the simulation to crash but may cause data

inconsistencies or non-physical behavior.

 4.5.4 Clock inaccuracy

The multitude of clock calls made by the SimPartner cause the PC clock to drift. This

behavior will cause errors of several seconds per one minute of simulation time. This

causes severe problems for analyzing the results, although the simulation itself runs

well. This problem can be addressed by using NTP to actively keep the clock of the

computer in correct time.

 4.5.5 Rolling friction

Currently ODE does not implement rolling friction. This can be observed by the fact

that a rolling object, such as a sphere, will not come to a complete stop without

external forces. If a simulation is initiated including a sphere with a given initial

velocity it will proceed with a constant velocity starting from time step 1.

 4.5.6 ODE version dependency

Since the open dynamics engine is not yet at full maturity and the software is still

being developed there is a tendency to use the most up-to-date version at all times.

Herein, however, lies a danger. ODE version 0.9 (revision 1441) was used during the

development of the framework. To achieve better performance the engine was

updated to its latest version (revision 1468) in the final stages of the project. This

caused all the simulations to become unstable. After this event ODE's official 0.9.0

release was used. This goes to show that the results can depend on the version of the

physics library used.

72

 4.6 SimPartner results analysis

 4.6.1 Realization of identified good features

The conclusion of the state-of-the-art study was a list of design features that can be

seen in high quality robotic simulator software. It is important to assess the quality of

created software by comparing it against the feature list.

• On target

This will ultimately be judged by the number of users this software will have.

This feature was targeted to be achieved by the continuous dialogue between

the author and the instructor of this thesis. Thus the user's viewpoint was

constantly present in the software development, which is a key issue in all

software projects.

• Open Source

The developed software is completely open source, and it was even

developed using open source tools. This was an unforeseen advantage as

people in the open source community were very willing to hint and advise on

the development as the end result would be open source. A problem in this

development model is the licensing. Even now, the SimPartner framework

contains components that have different licenses. Boost libraries are licensed

under the Boost license, ODE is under BSD license, MySQL under GPL, etc.

Thus developers need to keep track of the limitations of different licenses.

• Modular

SimPartner fulfills this requirement well. Certain interconnections exist in the

framework but if the user wants to substitute some parts of the simulator it is

perfectly realizable. For example, visualization information sharing with the

window manager is achieved purely by passing homogenous transformation

matrices and object ID numbers through the main program. If the user wants

to create his own window manager with some other rendering engine (such as

OpenSceneGraph1 or OGRE2), all relevant data can be found in the main

program in a documented format. The same principle applies to database

management and robot description modules.

• Flexible

This feature is realized by the use of human-readable configuration files of

the SimPartner framework. Granted, the framework is rather specialized and

it is not foreseeable that it could be used for any applications outside the field

1 http://www.openscenegraph.org
2 http://www.ogre3d.org/

73

of robotics simulation but in its field it is rather versatile. Simulation

parameters can easily be manipulated to achieve stable simulations. Robots,

control code and environments can be easily modeled and modified.

Furthermore, as the name of the file is always specified as a parameter,

storing different configurations and switching between them is easy and fast.

• Parametrized

As mentioned above, the operation of the framework can easily be

manipulated. This was essential even in the validation phase when robot

instabilities and performance issues could be addressed rapidly by altering

simulation parameters. Without this feature, the completion of this thesis

would have been impossible.

• Platform independent

As the framework was originally programmed on Mac OS X there were some

complications in porting the code to Ubuntu Linux. However, all the libraries

used are portable and no OS-specific code is used in the framework. The

software itself has been shown to operate in Linux and Mac operating

systems, and will most probably work in Windows as well. This feature is

therefore realized in the software.

• Real-time ready

As discussed earlier, the framework can be used with the gamepad controller

in real time. This can be extended to other real-time HMI controllers such as

joysticks or the manipulator control vest.

• Connected to actual hardware

This feature is not currently implemented. The command structure of the

WorkPartner robot is currently too complex to be integrated to the

framework. When the GIMNet framework is extended to the WorkPartner it

would be viable to use the simulator to guide the robot. This would require

GIMNet to be integrated to the SimPartner framework, which was not

achieved within the scope of this project.

• Verifiable

As this thesis presents, it is possible to validate the simulation model by

comparing the simulated data to analytically calculated or otherwise inferred

values. The values stored in the database are always in SI-units, which makes

it easier to analyze the data and to create new validation scenarios.

74

 4.6.2 Stability

The stability of the simulation framework remains an issue. At certain

configurations, such as a case where all the joints are locked with a sufficient

maximum force and a zero angle setting, the robot may become unstable. This means

that the simulation literally “explodes” and crashes. This can be remedied with

parameter manipulation or robot model modifications. There is no simple solution to

these problems, which arise with all dynamic simulators. The ODE manual lists

some issues that affect simulation stability:

Manual Notes

Stiff springs / stiff forces are bad.

Hard constraints are good.

Dependence on integration

timestep.

Timestep is very delicate, simulation can be

stable with 0.01 s but unstable with 0.02 s.

Use powered joint, joint limits,

built-in springs as much as

possible, avoid explicit forces.

Setting forces manually to objects may cause

undesired behavior in the integration step. This

can in turn cause unstability.

Mass ratios - e.g. a whip. Joints

that connect large and small masses

together will be inherently

susceptible to higher errors

Objects that are connected together should

have about the same mass. Otherwise

numerical errors in the integration may cause

the simulation to become unstable.

If bodies move faster than is

reasonable for the timestep

Velocities that are too high cause problems in

collision detection because penetration occurs.

Inertias with long axes Small and light objects are usually stable.

Increasing the global CFM will

make the system more numerically

robust and less susceptible to

stability problems.

Increasing correction coefficients also cause

the simulation to become less realistic. The

tradeoff here is between stability and realism.

Redundant constraints (two or

more constraints that ``try to do the

same job'') will oppose each other

and cause stability problems.

Redundant constraints causes singularities in

the system matrix, creating unnatural forces

that can be greater than the “real” forces

affecting the bodies, thus causing aberrant

behavior.

Table 2: Methods to increase simulation stability, adapted from (Smith n.d.) .

75

 4.6.3 Performance

The SimPartner framework requires a lot of computing power, especially when

database logging is used. If too many other applications are open, and/or the

computer does not possess the required computing capabilities, the performance may

not be good enough for real-time operation. Figures 27 and 28 show this

performance degradation clearly. FPS rates shown are 5 sample moving averages.

In Figure 27, the SimPartner framework and a sequencer client were run without any

other software on the development computer (MacBook Core2Duo 2.0 GHz, 2 GB

667MHz DDR2 SDRAM, OSX 10.4.11). The performance is good and stays within

real-time operating limits (FPS is greater than 20). In Figure 28, SimPartner is run in

parallel with a C++ development engine, word processor, internet browser, e-mail

client, etc. The real-time performance degradation is clear. The frame rate of

SimPartner falls to the non-real-time domain and stays there, oscillating wildly. In

this scenario the simulator is unusable.

As stated above, in some cases the simulation speed may not be adequate for real-

time operation. There are many causes for this, including the fact that SimPartner

uses the full accuracy stepping function provided by the ODE. The parameter file

also allows the usage of the limited accuracy “quickStep”-function. However, this

can be unstable when the system configuration is near-singular. This is the case when

there is a multi-legged robot standing on the ground. Therefore, this option cannot be

relied on.

Figure 28: SimPartner performance
with extra applications.

0 25 50 75 100 125 150 175

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

Time (s)

A
ve

ra
ge

 F
P

S

Figure 27: SimPartner performance
without extra applications.

0 25 50 75 100 125 150 175

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

Time (s)

A
ve

ra
ge

 F
P

S

76

 4.6.4 Open source software development

An important part of every software project is to document and analyze what was

good and what could have been done better to improve future work. Programming

the SimPartner framework was an important learning experience with several points

that can be considered to be lessons learned.

The whole project was built with and on top of open source applications. In

application development, several tools such as Eclipse CDT integrated development

environment, SVN source code control and versioning environment, and Doxygen

documentation tool were used. The gain is that the operator and anyone contributing

to the software are able to use the tools without charge. Even when these tools

evolve, the basic functionality often stays the same, ensuring that future work on

your project is easier.

Communication with the community is good. News groups, IRC channels and

mailing lists offer great help when the development is in difficulty. People are

generally eager to help, especially when writing open source software. There even

exists a best practices manual on “How To Ask Questions The Smart Way” 1.

Web-based software for collaboration is effective. Related to the point above, web-

based source code repositories help others to help you. When all the programs

produced are available online, it is easy to refer to them for everyone to see.

Furthermore, popular internet-based video sites provide the opportunity to record a

screen capture when visual documentation is necessary.

1 http://www.catb.org/~esr/faqs/smart-questions.html

77

 5 Conclusions
This thesis described the design and validation process of a dynamic mobile robot

simulator. The work was based on the state-of-the-art study and literature review of

existing simulators and their properties. General software engineering practices and

standards of the open source community were also taken into consideration.

The most important validation test was to simulate a full test run done by the actual

WorkPartner robot and to compare the results with the data from the actual robot.

The test was a success as the results showed that the simulator was able to model the

speed and force magnitudes of the real WorkPartner robot. It was also shown that the

simulation errors can be identified and mathematically explained to a certain degree.

The software framework follows the identified common features of robotic

simulators, furthermore the software has been verified to follow mathematical

models and validated against actual test data. It can be thus said that the simulator is

usable and trustworthy for control code development for mobile robot applications,

as long as all the constraints of simulation in general and SimPartner in particular are

taken into account.

It was also shown that real-time performance in dynamic robot simulations is

achievable with consumer grade computers. SimPartner is a real-time simulator that

can model complex mobile systems in a variable terrain with good enough real time

characteristics. This, however, requires fine tuning the simulator parameters so that

the performance level is acceptable.

 5.1 Future work

The framework is in itself usable but there still exist several areas that could be

improved.

• Code clarification

The framework was programmed and designed solely by the author. This is

generally not a very good way to design software. There are several

redundant functions and data types in the software that could be simplified

and clarified. This is also true on a general level, as overall complexity

tends to increase when the program is, even partially, designed in parallel

with the actual programming.

78

• Geometry primitives

The library of possible object geometries is currently rather limited. This is a

limitation that hinders robot control code development, as new environments

are harder to build. However, adding new primitives is a rather

straightforward task, explained in the SimPartner manual that accompanies

the software.

• GIMNet

The GIMNet framework was not used in the software in favor of a simple

TCP/IP based communication scheme. Adding GIMNet to SimPartner would

be a good improvement with added connectivity and usability. The

framework itself is not sensitive to the communication method and since the

base communication type is the same adding GIMNet should not be very

difficult.

• Robot editor

The SimPartner robot definition files tend to get rather lengthy when complex

robots are designed. For example the fourth generation WorkPartner model

was over 1400 lines long. A visual editor would therefore be a great aid when

altering the designs or creating new robots.

• Wheel-soil interaction

Wheel-soil interaction models do not currently exist in any major open source

robotic simulators. Adding this feature to SimPartner was tested but rejected

due to the fact that while the ODE library provides the necessary wheel forces

they can only be obtained at the end of the simulation step. This means that

all the forces affecting to the wheels can only be manipulated for the next

simulation step. This means that the wheel-soil model would be always one

step behind the actual simulation. If this issue is solved, adding the

interaction model would be possible as the ODE allows the manipulation of

all forces and velocities during the simulation.

79

 6 References
Aarnio, P., 2002. Simulation of a Hybrid Locomotion Robot Vehicle, Licensiate Thesis

PB2003-101519.

Aarnio, P., Koskinen, K., & Salmi, S., 2000. Simulation of the hybtor robot. In
Proceedings of the 3rd International Conference on Climbing and Walking
Robots. Madrid, Spain: Professional Engineering Publishing Ltd, p. 267-274.

Aarnio, P., Koskinen, K., & Ylönen, S., 2001. Using simulation during development of
combined manipulator and hybrid locomotion platform. In Proceedings of
International Conference on Field and Service Robotics., p. 287-294.

Bauer, R., Leung, W., & Barfoot, T., 2005. DEVELOPMENT OF A DYNAMIC
SIMULATION TOOL FOR THE EXOMARS ROVER. i-SAIRAS 2005'-The 8th
International Symposium on Artificial Intelligence, Robotics and Automation in
Space. Edited by B. Battrick. ESA SP-603. European Space Agency, 2005.
Published on CDROM., p. 15.1.

Biesiadecki, J., Jain, A., & James, M.L., 1997. Advanced Simulation Environment for
Autonomous Spacecraft. International Symposium on Artificial Intelligence,
Robotics and Automation in Space. Available at:
http://dshell.jpl.nasa.gov/postscript/isairas97.ps.

Biesiadecki, J. et al., 1997. A reusable, real-time spacecraft dynamics simulator. In
Digital Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE., p. 8.2-8-
8.2-14 vol.2.

Buehler, M. et al., 1999. Stable open loop walking in quadruped robots with stick legs.
In Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on., p. 2348-2353 vol.3.

Collett, T.H., MacDonald, B.A., & Gerkey, B.P., 2005. Player 2.0: Toward a Practical
Robot Programming Framework. Proceedings of the Australasian Conference on
Robotics and Automation (ACRA 2005).

Cottle, R.W. & Dantzig, G.B., 1968. Complementary pivot theory of mathematical
programming. Linear Algebra and Its Applications, 1, p.103-125.

Curto, P.A., 1997 NASA Software of the Year Competition. Available at:
http://icb.nasa.gov/swy97win.html [Accessed February 13, 2008].

Erleben, K., 2004. Ph.D. Thesis TStable, Robust, and Versatile Multibody Dynamics
Animation.

Fraczek, J. & Morecki, A., 1999. Modelling of contact in walking machines. In IEEE
SMC '99 Conference Proceedings. IEEE SMC, p. 948 - 952.

Gerkey, B., Vaughan, R.T., & Howard, A., 2003. The player/stage project: Tools for
multi-robot and distributed sensor systems. Proceedings of the 11th International
Conference on Advanced Robotics, p.317–323.

Jain, A. et al., 2004. Recent Developments in the ROAMS Planetary Rover Simulation
Environment. 2004 IEEE Aerospace Conference, Big Sky, MT, March 20, 2004.

80

Jain, A. et al., 2003. ROAMS: planetary surface rover simulation environment. In i-
SAIRAS 2003.

Jain, A., Jet Propulsion Laboratory: DARTS Home Page. Available at:
http://dshell.jpl.nasa.gov/DARTS/index.php [Accessed February 13, 2008].

Koenig, N. & Howard, A., 2004. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In Intelligent Robots and Systems, 2004. (IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on., p. 2149-2154 vol.3.

Kovo, H., 1999. Tietokonesimulointi (AS-74.1101 Computer simulation) - Lecture notes,
Helsinki University of Technology.

Leonard, J. et al., 2007. Team MIT Urban Challenge Technical Report.

Leppänen, I., 2007. Automatic locomotion mode control of wheel-legged robots,
Dissertation, Helsinki University of Technology.

Michaud, S. et al., 2004. RCET: ROVER CHASSIS EVALUATION TOOLS. In
Proceeding of the 8th ESA Workshop on Advanced Space Technologies for
Robotics and Automation. Noordwijk.

Michaud, S. et al., ROVER CHASSIS EVALUATION AND DESIGN OPTIMISATION
USING THE RCET. The 9th ESA Workshop on Advanced Space Technologies
for Robotics and Automation (ASTRA'06).

Michel, O., 2004. WebotsTM: Professional Mobile Robot Simulation. cs/0412052.
Available at: http://arxiv.org/abs/cs/0412052 [Accessed January 3, 2008].

NASA, 2007. Mars Global Surveyor (MGS) Spacecraft Loss of Contact. Available at:
http://www.nasa.gov/pdf/174244main_mgs_white_paper_20070413.pdf
[Accessed January 24, 2008].

Patel et al., 2004. Rover Mobility Performance Evaluation Tool (RMPET): A Systematic
Tool for Rover Chassis Evaluation via Application of Bekker Theory. In
Proceeding of the 8th ESA Workshop on Advanced Space Technologies for
Robotics and Automation. Noordwijk.

Poulakis, P. & Joudrier, L., 2006. Port-based Modeling and Simulation of Planetary
Rover Locomotion on Rough Terrain.

Smith, R., ODE manual, Available at: http://www.ode.org/ode-latest-userguide.html
[Accessed March 9, 2008].

Vaughan, R., Gerkey, B., & Howard, A., 2003. On device abstractions for portable,
reusable robot code. In Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on., p. 2421-2427 vol.3.

Yen, J., Jain, A., & Balaram, J., 1999. ROAMS: Rover Analysis Modeling and
Simulation. In Fifth International Symposium on Artificial Intelligence, Robotics
and Automation in Space. SP. Noordwijk: ESA, p. 249.

81

 7 Appendices
 7.1 Appendix 1 – Physics engines

Table 3: Comparison of different physics engines.

O
D

E

R
ig

id

Y
es

C
ou

lo
m

b
fr

ic
tio

n

20
si

m

P
or

t-
ba

se
d

R
ig

id

C
od

e
ge

ne
ra

tio
n

N
on

e

N
on

e

C
om

m
er

ci
al

, W
in

do
w

s

V
o

rt
ex

U
nk

no
w

n

D
yn

am
ic

s,
 K

in
em

at
ic

s,
 m

ec
ha

ni
cs

R
ea

l-t
im

e
fid

el
ity

R
ig

id

Y
es

F
irs

t
or

de
r

C
on

ta
ct

 P
oi

nt
s

(p
os

iti
on

, n
or

m
al

, d
ep

th
)

“D
et

ai
le

d
fr

ic
tio

n
m

od
el

s”

C
om

m
er

ci
al

, W
in

do
w

s
an

d
Li

nu
x

S
im

M
ec

h
an

ic
s

U
nk

no
w

n

K
in

em
at

ic
s,

 M
ec

ha
ni

cs

A
dj

us
ta

bl
e

w
ith

 a
 tr

ad
eo

ff
of

 s
pe

ed

R
ig

id
 (f

le
xi

bl
e

ex
te

ns
io

n
av

ai
la

bl
e)

C
od

e
ge

ne
ra

tio
n

A
ll

po
ss

ib
ili

tie
s

M
at

la
b

of
fe

rs

N
on

e,
 w

eb
si

te
 re

fe
re

nc
e

N
on

e
(ib

id
)

C
om

m
er

ci
al

, M
at

la
b

ex
te

ns
io

n

P
h

ys
ic

s
m

o
d

el
in

g

P
h

ys
ic

al
 D

o
m

ai
n

s

A
cc

u
ra

cy

B
o

d
y

ty
p

es

R
ea

l-
ti

m
e

In
te

g
ra

ti
o

n

O
b

je
ct

s

C
o

lli
si

o
n

 d
et

ec
ti

o
n

S
u

rf
ac

e
p

ro
p

er
ti

es

L
ic

en
se

, P
la

tf
o

rm

H
yb

rid
 (C

on
st

ra
in

t-
ba

se
d

+
 P

en
al

ty
)

D
yn

am
ic

s,

K
in

em
at

ic
s,

m

ec
ha

ni
cs

“n
ot

 fo
r

qu
an

tit
at

iv
e

en
gi

ne
er

in
g”

F
irs

t
or

de
r F

ix
ed

-s
te

p
E

ul
er

.

S
ev

er
al

 g
eo

m
et

ric

pr
im

iti
ve

s
+

 t
rim

es
he

s
an

d
pl

an
es

C
on

ta
ct

 P
oi

nt
s

(p
os

iti
on

, n
or

m
al

,
de

pt
h)

B
S

D
, p

la
tfo

rm

in
de

pe
nd

en
t

E
le

ct
ric

al
,

m
ec

ha
ni

ca
l,

hy
dr

au
lic

, t
he

rm
al

, h
yb

rid

A
dj

us
ta

bl
e

w
ith

 a
 tr

ad
eo

ff
of

 s
pe

ed

O
ne

-s
te

p,
 m

ul
ti-

st
ep

 o
r

m
ul

ti-
or

de
r

E
qu

at
io

ns
, s

ta
te

 s
pa

ce

de
sc

rip
tio

ns
, b

on
d

gr
ap

hs
,

bl
oc

k
di

ag
ra

m
s,

 ic
on

ic

di
ag

ra
m

s

G
eo

m
et

ric
 p

rim
iti

ve
s,

 t
rim

es
he

s,
 p

la
ne

s
an

d
co

m
po

si
te

s
F

un
ct

io
n

bl
oc

ks
 (

si
m

ila
r t

o
S

im
ul

in
k)

82

 7.2 Appendix 2 - UML sketch

Illustration 28: SimPartner software structure.

83

 7.3 Appendix 3 - Software versions

Library
name

Abbre
viatio
n

Version
number

URL Notes

Open
Dynamics
Engine

ODE 0.9 http://sourceforge.net/project/show
files.php?group_id=24884&packa
ge_id=18585&release_id=542627

Boost 1.34.1 http://www.boost.org/users/downlo
ad/

Boost 1.35 http://www.boost.org/users/downlo
ad/

For
Boost.ASIO.

Simple
DirectMedia
Layer

SDL 1.2 http://www.libsdl.org/download-
1.2.php

Including SDL-
image and
SDL-ttf

libxml++ 2.6 http://libxmlplusplus.sourceforge.n
et/

libmysql++ 2.3.2 Apple version
number
indicated.

OpenGL
Utility
Toolkit

GLUT 3 http://www.opengl.org/resources/li
braries/glut/

Table 4: Different software libraries used.

84

 7.4 Appendix 4 - Database structure

Illustration 29: Database structure

85

 7.5 Appendix 5 - Selected SQL queries

SELECT s.simulationtime,p.bodyID,p.x,p.z
FROM pose p, simulationrow s WHERE bodyID IN(

SELECT reference
FROM RobotComponent
WHERE robotID IN(

SELECT robotID
FROM Robot
WHERE simulationID=4045)

AND type='BODY'
AND name LIKE 'Calf%')

AND p.simulationRowID = s.simulationRowID;

Query for getting the leg positions of the robot in a given simulation.

SELECT s.simulationTime,p.anchorx,p.anchory,p.anchorz
FROM jointPose p, simulationrow s
WHERE p.jointID IN(

SELECT reference
FROM robotComponent
WHERE robotID IN(

SELECT robotid
FROM Robot
WHERE Simulationid = 4282)

AND name ='Turner')
AND p.simulationRowID = s.simulationRowID;

Query for getting the turner joint position in a given simulation.

SELECT s.simulationTime, sum(f.F_y)
FROM ForceAndTorque f, simulationrow s
WHERE bodyID IN(

SELECT reference
FROM RobotComponent
WHERE robotID IN(

SELECT robotID
FROM Robot
WHERE simulationID=4939)

AND type='BODY'
AND name like 'Wheel%')

AND s.simulationrowID = f.simulationrowID
GROUP BY simulationTime
ORDER BY simulationTime ASC;

Query for getting the accumulated forces affecting the wheels in a given simulation

SELECT SimulationRow.simulationTime,avg(Pose.x),avg(Pose.y)
FROM Pose, SimulationRow
WHERE Pose.simulationRowID = simulationRow.simulationrowID
GROUP BY Pose.simulationRowID;

Query for getting the location of the center of mass of the robot.

86

 7.6 Appendix 6 - Distance sensor measurements

Figure 29: Sensor readings opposite the turning direction (legend in radians).

0 50
5.3300
5.3400
5.3500
5.3600
5.3700
5.3800
5.3900
5.4000
5.4100
5.4200
5.4300
5.4400
5.4500
5.4600
5.4700
5.4800
5.4900

Sensor readings

0,1000

0,0800

0,0600

0,0400

0,0200

T (s)

D
is

ta
nc

e
(m

)

Figure 30: Sensor readings in the turning direction(legend in radians).

0 50
5.3250
5.3500
5.3750
5.4000
5.4250
5.4500
5.4750
5.5000
5.5250
5.5500
5.5750
5.6000
5.6250
5.6500
5.6750
5.7000

Sensor readings

0,0000

-0,0200

-0,0400

-0,0600

-0,0800

-0,1000

T (s)

D
is

ta
nc

e
(m

)

87

 7.7 Appendix 7 - Motion sequence in rolling walking

Illustration 30: Rolling Walking leg movements, From (P. Aarnio 2002)

	 1 Introduction
	 1.1 Thesis objectives
	 1.2 History
	 1.3 Core concepts
	 1.3.1 Mobile robots
	 1.3.2 Planetary rovers
	 1.3.3 Physics engines

	 1.4 Thesis outline

	 2 Previous Work
	 2.1 Mobile robot simulators
	 2.1.1 SimMechanics
	 2.1.2 Vortex
	 2.1.3 The P/S/G simulator project
	 2.1.4 WebOts
	 2.1.5 Digital Spaces

	 2.2 Planetary rover simulators
	 2.2.1 ROAMS
	 2.2.2 RCAST
	 2.2.3 RCET
	 2.2.4 RPET

	 2.3 Related Frameworks
	 2.3.1 DARTS
	 2.3.2 DSHELL (DARTS Shell)
	 2.3.3 ODE

	 2.4 Conclusions

	 3 SimPartner Framework
	 3.1 Overview
	 3.1.1 Parametrization

	 3.2 Open Dynamics Engine details
	 3.2.1 Bodies and geoms
	 3.2.2 Joints
	 3.2.3 The simulation loop
	 3.2.4 Collisions

	 3.3 Physics engine wrapper
	 3.4 Database
	 3.4.1 Selected Tables
	 3.4.2 Data analysis

	 3.5 Environment definition
	 3.5.1 Terrain modeling with heightfield

	 3.6 Robot definition
	 3.7 Sensors and actuators
	 3.7.1 TCP/IP communication
	 3.7.2 Sensors
	 3.7.3 Actuators

	 3.8 WindowManager, visualization and control
	 3.9 WorkPartner model
	 3.9.1 Generation 1
	 3.9.2 Generation 2
	 3.9.3 Generation 3
	 3.9.4 Generation 4

	 3.10 SimPartner clients
	 3.10.1 The interactive client
	 3.10.2 The sequencer client

	 4 SimPartner Performance
	 4.1 ODE accuracy
	 4.1.1 Integrator
	 4.1.2 Friction
	 4.1.3 Collision

	 4.2 Robot behavior
	 4.2.1 Generation 1 – driving a circular path
	 4.2.2 Generation 2 – a moving laser scanner
	 4.2.3 Generation 3 – Manipulator

	 4.3 Use case – control code development
	 4.3.1 Movement by rotation of skidding wheels
	 4.3.2 Caterpillar movement
	 4.3.3 Rolling Walking

	 4.4 SimPartner validation
	 4.4.1 Model weight distribution
	 4.4.2 Test terrain
	 4.4.3 Test velocities
	 4.4.4 Simulation velocities
	 4.4.5 Simulation wheel forces

	 4.5 Other Considerations
	 4.5.1 Object-object penetration
	 4.5.2 Object-ground penetration
	 4.5.3 Physics engine numerical instabilities
	 4.5.4 Clock inaccuracy
	 4.5.5 Rolling friction
	 4.5.6 ODE version dependency

	 4.6 SimPartner results analysis
	 4.6.1 Realization of identified good features
	 4.6.2 Stability
	 4.6.3 Performance
	 4.6.4 Open source software development

	 5 Conclusions
	 5.1 Future work

	 6 References
	 7 Appendices
	 7.1 Appendix 1 – Physics engines
	 7.2 Appendix 2 - UML sketch
	 7.3 Appendix 3 - Software versions
	 7.4 Appendix 4 - Database structure
	 7.5 Appendix 5 - Selected SQL queries
	 7.6 Appendix 6 - Distance sensor measurements
	 7.7 Appendix 7 - Motion sequence in rolling walking

