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Robottien käytöstä on havaittu saatavan suurta hyötyä avaruustutkimuksessa. Avaruus on erittäin 

vaarallinen toimintaympäristö ihmisille, muttei niinkään roboteille. Näin ollen robotit voivat olla 

suureksi  avuksi  yksinkertaisissa  tehtävissä  kuten  tiedustelussa,  tavaroiden  siirtämisessä  ja 

tieteellisissä  mittauksissa.  Tämän työn tutkimuskohteena on kentaurirobotti  WorkPartner, jonka 

avulla  on  mahdollista  suorittaa  useita  näistä  tehtävistä.  WorkPartner on  kenttärobotti  joka  on 

suunniteltu  interaktiiviseen  yhteistyöhön  ihmisten  kanssa  ja  jota  käytetään  Euroopan 

avaruusjärjestön Network Partnering -ohjelmassa astronautti-robotti yhteistyön tutkimiseen. 

Lopputyö  esittelee  “SimPartner”-ohjelmiston,  dynaamisen  robottisimulaattorin  WorkPartner-

robotille  käyttäen ODE (Open Dynamics  Engine)  -fysiikkakirjastoa.  Ohjelmisto  sisältää tarkan 

mallin robotista, käsittäen osien mitat, painot, nivelet, sensorit ja toimilaitteet. Kaikki sensorit ja 

toimilaitteet tarjotaan käytettäväksi asiakas-palvelin-rajapintoina.

Realistinen dynaaminen robottimalli on monella tapaa hyödyllinen astronautti-robotti -yhteistyön 

kehittämisessä. Robottimallia voidaan käyttää kontrollikoodin kehittämiseen ja robotin käytöksen 

ennustamiseen  esimerkiksi  teleoperointitehtävissä.  Mallia  voidaan  myös  käyttää  voimien  ja 

vääntömomenttien ennustamiseen tilanteissa,  joissa mittausten tekeminen varsinaisesta robotista 

olisi  vaikeaa  tai  mahdotonta.  Lisäksi  mallia  voidaan  käyttää  turvallisesti  odottamattomissa 

tilanteissa ja tehtävien opetuksessa silloin, kun varsinainen robotti on muissa tehtävissä.

Työssä  osoitettaan  että  varmennettavissa  olevan  tosiaikaisen  dynaamisen  robottisimulaattorin 

luominen  on  mahdollista  vertaamalla  simulaatiosta  saatuja  tuloksia  mittauksiin  jotka  on  tehty 

suoraan  robotista.  Vertailun  mahdollistavat  TKK:lla  aiemmin  tehdyt  tutkimukset,  joissa 

robottialustaa on testattu esimerkiksi pyöräkävelyn aikana. 

Mallin suorituskyky varmistetaan vertaamalla saatuja tuloksia matemaattisiin malleihin.  Lisäksi 

mallin  puutteet  ja  epäideaalisuudet  arvioidaan  luotettavan  lopputuloksen  varmistamiseksi. 

Suorituskyvyn  analysoinnin  lisäksi  simulaattori  esitellään  muiden  jo  olemassa  olevien 

avaruusrobottisimulaattorien kontekstissa. 
Avainsanat: robottisimulaattori, simulointi, WorkPartner, modulaarinen simulaattori, mallinnus
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The need for robotic assistance has been identified to be essential in space exploration missions. 

The hazardous space exploration environment is extremely difficult for humans but manageable 

for  robots.  Thus robots  can be  a  valuable  aid  even in  simple tasks  such as  scouting,  moving 

objects,  and  performing  measurements.  This  work  is  targeted  to  a  centauroid  robot,  called 

WorkPartner, which  can  perform many of  these  required  tasks.  The  WorkPartner is  a  mobile 

service robot, which is designed to work interactively with humans and is currently used within the 

ESA Network Partnering programme to research astronaut-robot cooperation.

This thesis describes “SimPartner”, a dynamic robot simulator of the WorkPartner robot created 

using ODE (Open Dynamics Engine) software. The software incorporates an accurate model of the 

robot, including part lengths, masses, joints, actuators and sensors. All the model's sensors and 

actuators are provided by using a client/server architecture. 

There are  several reasons why a realistic  dynamic robot  model is  useful  for  robotic astronaut 

assistance development. The robot model can be used to develop the robot's control code and to 

predict its behavior e.g. in tele-operated tasks. The model can also be used to estimate forces and 

torques that would be difficult to measure from the actual robot. In addition, the model could be 

safely used to define and test tasks for handling unexpected events and to enable off-line robot task 

teaching.

The scientific contribution of this thesis is to demonstrate that it is possible to create a verifiable 

real-time dynamic mobile robot simulator for a centaur-like mobile service robot. This is achieved 

by comparing the simulation with the measurements from the actual WorkPartner robot. This can 

be done for example by comparing the joint torques during wheel walking, which has already been 

studied at TKK. 

In addition to the analysis of simulation performance, the simulator is presented and discussed in 

the context of previous space robot simulators. Furthermore, the scientific validity of the approach 

is demonstrated by verifying the mathematical concepts behind the model, and also calculating and 

verifying the performance levels and limitations of the model.
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 1 Introduction
The purpose of this thesis was to create and validate a dynamic robot simulator to be 

used in Seppo Heikkilä's  PhD study on Astronaut and robot cooperation for natural 

and seamless task execution. The WorkPartner robot is a novel construction and 

development time using the robot is severely limited. Furthermore,  since part of the 

study is being conducted in the ESA premises in Noordwijk, the Netherlands, it is 

difficult to perform testing with the actual robot.

 1.1 Thesis objectives

With the above mentioned constraints in mind it was decided to design and program 

a robot simulator that could be used to develop software for the actual robot. The 

major design objectives were:

● Real-time dynamics modeling software with the SpacePartner body and torso 

capable  of  interacting  with  other  virtual  objects  (forces,  locations  and 

velocities of different parts extractable).

● To develop  a  robust  XML-based  language  to  describe  the  robot  and  its 

environment (including masses, dimensions, and joints).

● 3D visualization of simulation for analysis, debugging and control purposes.

● MySQL-based  modular  software  architecture,  i.e.  separation  of  different 

functionalities (physics, visualization, communication, control).

● Comparison of simulation data with results acquired from the actual robot.

● The developed software should run on Linux (Ubuntu/Debian).

The minor/optional design objectives were:

● GIM interface to the model.

● Editor for the XML-based world and robot model (use of an existing editor 

could be the best option).

● The developed software should run on Mac and Windows.

A crude division of work was derived from these objectives:

● State-of-the-art study, literature review – 2 weeks

● Framework functionality – 5 weeks

● SpacePartner modeling – 5 weeks

● Additional features – 5 weeks 

● Testing and evaluation – 5 weeks

● Thesis finalization – 3 weeks
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 1.2 History

The  history  of  computer  science  is  closely  related  to  the  history  of  dynamic 

simulation, as described by  (Kovo 1999, p.5-6). The first computers were used to 

solve partial differential equations related to the development of the atomic bomb. 

Military, aeronautic and space industries have been using computer simulation from 

as  early  as  1950s.  During  the  fifties  and  sixties  analog  computers  were  used 

extensively. These machines were able to solve differential equations very fast and 

the first hardware-in-the-loop solutions were in fact reached using them. The digital 

revolution of the 1970s replaced the analog computers with digital ones. During this 

shift  hybrid computers  containing both  analog and digital  components  were  also 

used. Nowadays simulation is used everywhere in our society, from weather forecasts 

to  ensuring  that  traffic  lights  are  timed  efficiently. Wind tunnel  testing  is  very 

expensive  since  the  pieces  to  be tested must  be  fabricated  and tested.  Computer 

simulation of the effect of drag forces on cars and aeroplanes offers great savings for 

vehicle manufacturers. With the development of 3D-graphics, simulators can also be 

used as training simulators for airline pilots and other personnel. The whole video 

game industry can also be seen as a branch of computer simulation.

The computer technology used in computer simulation has traditionally been of the 

highest standard and even now a major portion of supercomputer time is devoted to 

calculating weather forecasts. However, the rapid development of PC technology has 

made it possible to simulate dynamic systems on desktop computers. Dynamic robot 

simulators are now available for commercial, off-the-shelf hardware. 

The  fundamental  trade-off  in  dynamic  real-time  simulation  is  between  real-time 

performance and simulation accuracy. At a very low level, accuracy is defined by the 

number of bits the program uses to represent floating-point numbers. This is a feature 

of digital computers that sets an ultimate limit on how accurate the system can be. In 

practice, the limit is much poorer. Processing power and memory define the length of 

the possible time step that the computer is able to calculate within the given real-time 

constraint. 

Distributed  computing  and  parallel  processing,  combined  with  the  low  cost  of 

memory and storage media  offer some relief  to  these  problems  but  it  has  to  be 

understood that there is a limit to the accuracy a real-time computer based simulation 

software can achieve.
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 1.3 Core concepts

This section is an overview of different simulators used in modeling and testing of 

terrestrial mobile robots and planetary exploration rovers. The goal of this section is 

to identify the best features of different simulators and to validate design choices for 

creating a good quality mobile robot simulator. 

 1.3.1 Mobile robots

A mobile robot is an automatic machine that is capable of moving in its environment 

and is usually able to interact with it. Mobile robots are often characterized by their 

means of locomotion, namely legged, wheeled or tracked. Robots are often used in 

tasks that are too repetitive,  monotonous and/or dangerous for human beings. An 

example of a mobile robot is shown in illustration 11.

 1.3.2 Planetary rovers

A planetary  rover  is  a  mobile  robot  located  in  an  extraterrestrial  environment, 

exploring its surroundings. Rovers are very practical in planetary exploration and 

have been used since the Russian Lunokhod 1 landed on the moon in 1970. The 

extraordinary success of NASAs MER-A and MER-B (more commonly known as 

Spirit  and  Opportunity)  solidified  the  role  of  autonomous  rovers  in  planetary 

exploration.

According  to  (Bauer,  Leung,  &  Barfoot  2005),  the  downside  of  the  use  of 

autonomously moving rovers is the increased need to test the stability of mechanical 

solutions,  as well as the sensor and actuator hardware and software,  and perhaps 

1 Picture source http://automation.tkk.fi/WorkPartner

Illustration 1: WorkPartner - a 
mobile service robot (artist's 
impression).
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most importantly the onboard computer system. This increases the need for quality 

simulation software. Simulations also make multiple iterations cheaper in the early 

design phases as prototypes do not have to be built. Simulation also makes it possible 

to  study  the  effects  of  parametric  changes  on  design  details.  Finally, it  is  very 

difficult  to  reproduce extraterrestrial  conditions,  such  as  martian  gravity, without 

using simulations.

 1.3.3 Physics engines

The core of the simulator software is the physics engine. Physics engines can be 

categorized using many different metrics, the most relevant here being accuracy and 

required computing power. These two often form a trade-off, increased accuracy 

deteriorates real-time performance and vice versa. As both are crucial for a mobile 

robot simulator, it is necessary to determine when the accuracy is  good enough for 

the simulation task at hand. When the accuracy is determined it is possible to check 

whether the frame rate is sufficient for real-time operator or hardware-in-the-loop 

performance. 

(Erleben  2004,  p.10) wrote  that  the  functionality  of  a  physics  simulator  can  be 

crudely divided in two main parts, physics simulation and collision detection. The 

physics simulation component calculates the motion of the objects in the systems 

based  on  their  current  state  (position,  velocity, acceleration,  forces,  torques  and 

impulses).  This  requires  integration,  which  also  creates  inherent  error  in  the 

simulator. Collision detection is a geometrical problem of intersecting objects and it 

is  computationally  intensive.  When  the  positions  of  all  the  objects  have  been 

calculated  by  the  simulation  component,  the  collision  detection  component 

determines collisions,  or technically, points of intersection between objects.  After 

this the collisions have to be resolved and the resulting forces calculated. This is a 

very  complex  problem,  and  general  solutions  do  not  exist.  Collision  detection 

problems  cause  unidealities  and  instabilities  in  dynamic  simulations.  Often  a 

multitude of simplifications must be made to make the collision detection system 

work. 
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Physics  engines can be grouped by their  simulator  paradigms.  Some of  the well 

known include:

• Constraint-based methods (Erleben 2004, p.20)

Very complex paradigms that do not allow penetration and are typically very 

good at handling complex configurations with static contacts.

• Penalty methods (Erleben 2004, p.20)

Simpler than constraint-based methods, can easily be extended to handle soft 

bodies. Allow penetration of objects. 

• Impulse-based methods (Erleben 2004, p.20)

Interaction between objects is simulated as collision impulses. Do not allow 

penetration. Static contacts modeled as a series of micro-collisions.

• Collision synchronization (Optimization-based) (Erleben 2004, p.23)

Makes large time steps possible by synchronizing collisions at the end of each 

frame.

• Port-based modeling (Poulakis & Joudrier 2006)

The system is modeled using bond graphs in which different components and 

subsystems are connected via bonds that exchange energy. The model has 

causality and using Kirchoff's laws the total energy transfer can be calculated.

The  existence  of  these  different  paradigms  itself  reflects  the  complexity  and 

computational costliness of physics simulation. The field has been researched from 

the 1960s onwards but only now is it becoming possible to build accurate real-time 

physics engines. 

Appendix 1 lists four commonly used physics engines. It can be seen that there is no 

all-in-one solution but rather developers must select their engine carefully to suit 

their project. For example, SimMechanics offers seamless Matlab interaction and 

ease of use as systems can be built with Simulink-style function blocks. The 

downside is that it completely lacks collision detection. In comparison, ODE only 

offers a C++ -interface but is more versatile and has collision detection.

 1.4 Thesis outline

The outline of this thesis follows the process of the associated software framework 

development.  The  second  section  describes  the  state-of-the-art  research  where 

existing simulators were studied to establish development targets for the software. 

The  third  section  describes  the  software  framework  itself  and  the  fourth  the 

associated testing and validation.  The final  conclusions are presented in the fifth 

chapter. 
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 2 Previous Work
This section starts with an overview on mobile robot simulator usage reasons and 

principles. After this some state-of-the-art simulators are presented. The details of 

some  of  the  simulators  can  be  found  in  appendix  1.  After  this  planetary  rover 

simulators are presented.

 2.1 Mobile robot simulators

The necessity for mobile robot simulators has been recognized by several different 

robotics research groups. Simulation is used in some phase of almost every mobile 

robot research project (P. Aarnio, Koskinen, & Ylönen 2001, p.1). There are several 

reasons why robot simulators are useful, including: 

1) Reduction of development time of the robot control code.

2) Increased quality of the robot control code.

3) Enabling  the  testing  of  complex  control  algorithms  in  real  time  using 

powerful  computers  to  perform  tasks  that  are  normally  done  by  simple 

controllers.

4) Cost  savings  by  avoiding  unnecessary  damage  to  actual  robot  equipment 

when testing new control strategies or stability solutions.

5) Simulation of complex systems without having to build them.

6) Studying robot behavior in an unattainable environment.

Previously,  several  research  groups  have  also  built  whole  simulator  packages 

themselves,  leading  to  robotics  specialists  concentrating  on  things  that  are  not 

essential  in  constructing  a  robust  robot  control  code,  such  as  ground  contact 

modelling and impact forces as described in (Buehler et al. 1999). 

The majority of simulators developed by researchers are created using open source 

source rationale to promote platform independence  (Vaughan, Gerkey, & Howard 

2003),  distributed software development to loosen the coupling between different 

modules  (Collett, MacDonald, & Gerkey 2005) and making use of other available 

open source libraries. However, proprietary simulators such as the ADAMS package 

(Fraczek & Morecki 1999) and Envision  (P. Aarnio, Koskinen, & Salmi 2000) are 

also used. 

Use  of  simulators  is  nowadays  vital  when  developing  mobile  robots.  There  are 

several reasons for this. One advantage is that when the architecture of the robot is 

selected,  simulators  can  be  used  to  emulate  the  sensor  information,  making  it 
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possible to program the control code when the actual robot does not yet exist. A 

second advantage is  that  the robustness of the control  system can be tested with 

several different environments. Furthermore, since testing time with the actual robot 

is limited, simulators can be used to enhance the parallel development of systems. 

Using simulators can greatly reduce the cost and effort in building mobile robots. 

There  are  several  papers  that  describe  this,  for  example  MIT's  DARPA Urban 

Challenge  team  used  two  different  simulators  when  creating  their  competition 

vehicle, as described in (Leonard et al. 2007). 

 2.1.1 SimMechanics

SimMechanics  is  a  commercial  tool  for  simulating  mechanical  systems.  It  is  an 

extension  of  Matlabs  Simulink  software.  Its  key  features  are  ease  of  use  and 

integrability to existing Simulink block diagrams. Mechanical systems (linear and 

nonlinear)  can  be  modeled  with  SimMechanics  blocks  that  can  be  connected  to 

Simulink blocks. CAD models can also be directly translated to function blocks by 

using separate software. SimMechanics also offers Matlabs powerful mathematical 

tools,  such as integration and optimization. Furthermore other Matlab extensions, 

such as the Real-Time Toolkit can be integrated into the development environment. 

The drawback of this software for mobile robotics is that there is no built-in collision 

detection, but the user must take care of this. The system also offers automatic C-

code generation.

 2.1.2 Vortex

The  Vortex simulation  toolkit,  developed  by  CMLabs  Software,  is  a  proprietary 

development platform that offers physically accurate modeling of ground vehicles, 

soil,  terrain,  and  other  real-world  objects.  It  has  a  C++ API  and integrated  3D-

graphics utility. It also supports geometric collision detection. The software has been 

used  for  example  in  developing  training  simulators  for  tower  cranes,  deep  sea 

remotely operated vehicles and explosive ordnance device robots by EADS. It has 

also received an award by the Military Training Technology magazine.  Vortex is 

targeted to the market segment in which real-time performance is more important 

than high-fidelity physics modeling. Robot systems are developed using fundamental 

building  blocks,  such  as  cuboids  and  spheres.  Sensors  and  Actuators  are  then 

incorporated into the system, making it possible to interact with the environment and 

receive data from it. 
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 2.1.3 The P/S/G simulator project

The Player/Stage simulator has been cited as the de-facto standard in the open source 

robotics  community.  Its  design  goals  are  platform  independence,  enhanced 

scalability, development  process  simplification,  real-time performance,  integration 

with  existing  infrastructure,  promotion  of  software  reuse,  programming  language 

independence and transport independence (Collett, MacDonald, & Gerkey 2005).

Player

The  original  Player  simulator  is  a  network-oriented  architecture  that  abstracted 

physical robot properties by using:

• Character device model

Popularized by *nix1 systems, abstracts all I/O devices as data files. Data can 

be collected from a device by reading and sent to the device by writing a file. 

In  Player,  robot  sensors  can  be  accessed  by  reading  them,  and  actuators 

manipulated by writing to them.

• The interface/driver model

As the character device model defines only the semantics of the devices but 

not  the  data  formats,  an  additional  model  is  needed.  This  determines  the 

content of the streams and provides device independence, yielding portable 

code. 

• The client/server model

This abstraction provides a way to implement a robot interface. Player user's 

control  program,  the  client,  is  separated  by  a  standardized medium (TCP 

socket) from the server, which executes low-level device control. This yields 

language-neutrality  as  the  client  can  be  written  using  any  programming 

language that can support the communication medium (Vaughan, Gerkey, & 

Howard 2003).

Stage

The Stage (2D) multiple robot simulator ”simulates a population of mobile robots, 

sensors and environmental objects”. The Stage was built to experiment with swarms 

of several robots that would be expensive to purchase and maintain. The multi-robot 

system simulation is designed to be achieved by:

1 Unix, Linux, Solaris, etc.
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• “Good enough” fidelity

Computationally cheap models of devices rather than ideal emulation.

• Linear scaling with population

Sensor models use algorithms that are independent of population size.

• Configurable, composable device models

• Various sensor and actuator models are provided and they are sufficiently 

flexible.

• Player interface

All sensor and actuator models are available through Player's interfaces.

Although there is no guarantee that robot behavior in Stage is comparable with that 

of real robots, users have found that software developed with Stage works with “little 

or  no  modification  with  the  real  robots  and  vice  versa”.  (Gerkey, Vaughan, & 

Howard 2003)

Gazebo

The Gazebo software brings 3D-capability to the simulator package. Whereas 2D is 

generally sufficient in simulations that include indoor robots,  a three dimensional 

simulator is needed when outdoor mobile robots are concerned.  Gazebo is designed 

to accurately reproduce the dynamic environments which a  robot  may encounter. 

Simulated objects have a mass, velocity and numerous other attributes that contribute 

to realistic interaction with the environment. Therefore these objects can be pushed, 

pulled, carried, etc. The architecture of Gazebo is based on the idea that it should be 

easy to create new robots, actuators, sensors, and other objects.  The general structure 

of  Gazebo  components  is  shown  in  illustration  2.  It  incorporates  two  external 

libraries,  namely  ODE  for  rigid  body  dynamics  and  collision  modeling,  and 

OpenGL/GLUT for visualization. Simulator development is simplified by the use of 

these external libraries and internal abstraction also makes it possible to replace them 

if better alternatives become available. Gazebo interfaces with Player in the same 

way that Stage does. The Player device server treats Gazebo in the same way as all 

devices capable of sending and receiving data (Koenig & Howard 2004)
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Gazebo also has a number of significant limitations that make it unsuitable for some 

tasks.  The most  important  limitations are the lack of  soil/surface modeling,  non-

deformable  objects  and  missing  fluid/thermal  dynamics.  As  a  technical  aspect, 

distributed  computing  is  not  available  in  Gazebo  due  to  its  monolithic  physics 

engine. (Koenig & Howard 2004)

It  should also be  noted that  the  software is  not  yet  in  version 1.0 maturity. The 

current version number is 0.10, released 1 July 2008.

 2.1.4 WebOts

WebOts is a commercial mobile robot simulation software designed to be used at 

robotics research and teaching institutes. WebOts uses ODE as a physics engine and 

its main features include:

• Sensor and actuator libraries

• Ready-made models for several robots

• C, C++ and Java interfaces, plus a TCP/IP interface

• Simulation  of  multi-agent  systems  with  local  and  global  communication 

systems. (Michel 2004).

WebOts is  primarily  meant  for  developing  cross-platform,  easily  implementable 

robot source code for ready-made and custom robots. 

Illustration 2: Gazebo components.



11

 2.1.5 Digital Spaces

Digital Spaces is an open source immersive multimedia presentation and simulation 

engine programmed in C++. It uses ODE as a physics engine and OGRE (Object-

Oriented Graphics Rendering Engine) for visualization. It is designed to be used in 

the Microsoft Windows operating system and is currently at version 0.10 maturity.

 2.2 Planetary rover simulators

This section presents an overview of different planetary rover simulators used today. 

It  starts with a description of the rationale of usage of these simulators and then 

presents the simulators in detail. 

The  necessity  of  advanced  simulation  software  in  space  applications  is  obvious. 

Currently simulators are used in all fields of engineering, and space engineering is no 

exception.

In  the  conceptual  study  and  preliminary  analysis  phase,  simulators  can  be  used 

extensively to test different designs without the inherent cost of building prototypes. 

By building a spacecraft model and testing it in the simulator, all different design 

possibilities can easily be tested. Spacecraft response to commands can also be tested 

by using operator-in-the-loop simulations. 

In  the  design,  development  and testing  phase simulators  serve in  different roles. 

When hardware and software choices are made the simulated components can be left 

out of the model and the actual component response can be tested using hardware-in-

the-loop simulations. When the spacecraft  concept is  ready, the onboard software 

functionality  can be  tested with just  the  sensors  connected to  the  simulator. The 

response of the spacecraft to artificial stimuli can thus easily be tested.

In the operations phase the commands that are about to be transmitted to the satellite 

can be transmitted to a simulator first, confirming the correctness of the commands 

and verifying that the desired reaction is produced in the spacecraft. This reduces the 

chance of a mission loss due to, for example, a typing error in the spacecraft control 

commands.

If, however, something goes wrong and the mission is lost, simulators provide a good 

way to analyze the reasons even when very little data is available from the actual 

mission. A good example of this is the analysis of the failure of the Mars Global 
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Surveyor satellite. The last communication with the satellite occurred in November 

2006, after which the mission was deemed lost. The decisive event was two high-

gain  antenna  direction  commands  “commanded  with  slightly  different  (operator 

input) precision”. This led to a catastrophic chain of events that eventually caused the 

mission to fail. (NASA 2007)

By simulating the commands the engineers were able to determine the events very 

accurately,  yielding  several  findings  in  operational  procedures  and  processes, 

spacecraft design weaknesses and lifetime management considerations that can now 

be taken into account when designing future missions.

 2.2.1 ROAMS

ROAMS is  a  real-time physics-based simulator  for  planetary  surface  exploration 

rovers.  It  is  designed  to  provide  a  virtual  testing  ground  for  rover  navigation, 

mechanical, electrical, sensor, power and control subsystems. It can be used for both 

operator-in-line and off-line subsystems since it is based on the DARTS/DSHELL 

framework. Rover subsystems and the base model have been developed using the 

Rocky-7 Mars rover prototype. For example, a novel kinematics solution has been 

developed using constrained optimization to be used in driving on Mars-like terrains. 

Some pre-existing model libraries, such as the solar panels and batteries, could be 

reused from the DARTS/DSHELL framework. The simulator has also been used to 

simulate  a  planning system for  a  rover  swarm,  three  rovers  working  together  to 

perform complex tasks. (Yen, A. Jain, & Balaram 1999)

To test  the rover's  on-board software it  is  set  to  run in a  Unix real-time system. 

ROAMS creates the simulated sensor input to the software, which in turn computes a 

Illustration 3: ROAMS screen shot.
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sequence of way-points using its navigation and collision avoidance systems. The 

resulting wheel-motor and steering motor commands are then passed to ROAMS 

which approximates the next position of the rover and solves the inverse kinematics 

for the configuration of the rover. Then the next set of sensor inputs is passed to the 

rover software. With this method the stability and robustness of the software can be 

qualitatively measured. (Yen, A. Jain, & Balaram 1999)

ROAMS is generally used to model 6-wheeled rovers using rocker-bogey suspension 

with  variable  numbers  of   steerable  wheels.  Whereas  the  DARTS framework 

provides the kinematic solution for general multi-body topologies, several specific 

models are needed by ROAMS. These include wheel sliding, slipping and sinkage as 

well as terrain feature (smooth, piecewise-smooth, nonlinear) approximations. Once 

the contact force has been determined, DARTS/DSHELL can be used to determine 

the rover state. (A. Jain et al. 2003)

Currently, ROAMS is being developed under the following design goals (A. Jain et 

al. 2004):

• Validated physics based models

High fidelity to support closed-loop testing. This requires the development of 

good quality mechanical, actuator, sensor and environmental models.

• Model configurability

Rover configuration can evolve considerably during the design phase. The 

simulator has to be versatile enough to allow users to configure model data 

files easily.

• Closed-loop simulations

The  simulator  has  to  be  embeddable  to  an  environment  consisting  of  a 

mixture of on-board software, real and simulated hardware. This also raises 

performance considerations as the simulation must be able to run in real-time. 

• Layered toolkit approach

The simulator should provide a good level of instrumentation and features in 

order to be useful. A layered design in which several modules are provided as 

plug-ins is adopted to avoid the code size and external dependency explosion. 

This also promotes code reuse.

• Spacecraft simulation framework

The simulator is built upon an existing DARTS/DSHELL framework. This 

enables the developers to focus on rover-specific extensions and make their 
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contributions usable by all projects sharing the same infrastructure. A case 

example of this is the DSENDS entry simulator which is based on the above-

mentioned framework and also uses ROAMS dynamic simulation and terrain 

modeling libraries.

• Open source tools

The  simulator  development  emphasizes  the  use  of  open  source  software 

whenever possible. This has led to inclusion of several libraries and tools into 

the simulator.

• Usable

Simulator  is  developed  with  the  user  in  mind,  providing  several  user 

interfaces and reducing the learning curve.

ROAMS can be run in  several  different modes,  including stand-alone mode that 

provides a Tcl command line interface for user-simulation interaction, and a C++ 

interface to allow rover software to interact with ROAMS. The whole simulator can 

also be run as  a  Matlab S-function block so that  it  can be integrated into larger 

simulations.  The  ground  contact  computations  are  made  by  using  the  SWIFT++ 

library. To reduce computation time, only a small patch of ground underneath the 

rover is used for calculating the possible contact points. As the rover moves, these 

patches are created and destroyed. ROAMS can also be used to estimate kinematic 

parameter dependencies using the Monte Carlo method. This capability is inherited 

from the DARTS/DSHELL framework. (A. Jain et al. 2003)

 2.2.2 RCAST

RCAST is a rover chassis and analysis computer simulation which couples a rigid 

multi-body dynamics engine (Matlab's SimMechanics)  together with  AESCO's Soft 

Soil Tire Model (AS2TM) terramechanics module to study locomotion performance. 

Illustration 4: RCAST architecture.
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It has been developed for phase A studies of the ExoMars rover. The rover model is 

defined using CAD models from SolidWorks or ProEng. This simulator has been 

developed to support rover chassis design and optimization, and the model has been 

verified using various scenarios including slope climbing. Since wheel walking is a 

novel concept in planetary rovers, it has to be simulated in an early phase of chassis 

development. Simulation results showed that “wheel walking can enable the rover to 

climb slopes which are significantly steeper than that achieved by actuating all wheel 

motors and attempting to drive straight up a slope”. (Bauer, Leung, & Barfoot 2005)

It was also necessary to validate the simulation results using wheel-soil interaction 

experiments. A testbed was constructed and the results were compared with a single 

wheel simulator. The test setup was used to measure interaction forces and torques as 

a  function  of  the  slip  ratio.  These  measurements  confirmed  the  validity  of  the 

simulation and also yielded soil parameters that could be used to tune the simulation 

of the rover chassis.  To fully validate the simulation, a testbed for the full  rover 

chassis will be required. (Bauer, Leung, & Barfoot 2005)

 2.2.3 RCET

RCET is a set of tools to support design, selection and optimization of exploration 

rovers  in  Europe.  The  goal  is  that  RCET  will  enable  accurate  predictions  and 

characterizations  of  rover  performance  as  related  to  the  locomotion  subsystem. 

RCET is designed to be a database-driven application to simulate rovers, augmented 

with two hardware testbeds. RCET will also incorporate a set of parametric tools to 

allow design and simulation of rovers in a short time. Parametric tools consist mainly 

of a 2D-simulator to help deciding in the first-order trade-offs. After this the 3D-

simulator will be used for validating the rover concept. The testbeds are similar to 

those used in RCAST, one for single wheel testing and one for verifying simulations 

using a complete chassis prototype. (Michaud et al. 2004) As a matter of fact, RCET 

would  have  been  used  for  ExoMars  simulations  had  it  been  ready  when  the 

conceptual study began. (Bauer, Leung, & Barfoot 2005)

The  central  piece  of  the  simulator  architecture  is  a  database.  It  makes  report 

generation easy and allows easy data comparison between the real measurements and 

simulation. RCET, like RCAST, is a simulator to study motion control of wheeled 

rovers. It is developed precisely for this purpose to allow fast prototyping at the early 

design phases and also to make it possible to make quantitative analysis suitable for 
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concept validation. (Michaud et al. 2004)

Using RCET, researchers were able to compare two chassis models on a key metrics, 

including drawbar pull as a function of wheel slippage and friction coefficient while 

climbing  over  rocks.  The  metrics  were  first  simulated,  then  validated  using  the 

testbeds.  This  led  to  a  conclusion  that  “there  is  less  difference  in  terms  of 

performances between two different rover chassis than between the same architecture 

with different internal dimension”. Simulations can yield such valuable information 

that the design team can then use to justify their trade-offs. (Michaud et al. n.d.)

 2.2.4 RPET

This software consists of two main modules, Rover Mobility Performance Evaluation 

Tool (RMPET) and Mobility Synthesis (MobSyn). It is a simple, user friendly and 

accurate  tool  to  perform  preliminary  analysis  for  the  configuration  of  planetary 

rovers. (Patel et al. 2004)

RMPET

This tool is used within the RPET to compute the mobility performance parameters 

and the Mean Free Path (MFP) depending on the type of the locomotion system 

(wheeled, tracked or legged) and soil (martial, lunar, terrestrial or user defined). The 

mobility performance parameters include (Patel, A. Ellery, Allouis, Sweeting, & L. 

Richter 2004):

• Soil Shear Strength, which determines the maximum shear stress the soil can 

resist.

• Soil Thrust is the maximum tractive effort the soil can provide.

• Soil Slip is the difference between the vehicle's translational velocity and the 

rotational velocity of the wheel/track.

• Motion Resistances are forces acting in opposition to the soil thrust, caused 

by soil compaction due to sinkage, bulldozing and gravitational resistance. 

• Drawbar Pull is the difference between soil thrust and motion resistance. It is 

the “most important value in the development of a vehicle as it defines the 

ability of a vehicle to traverse over a specified terrain. In order for a vehicle 

to negotiate terrain it must have a positive Drawbar Pull”(ibid).

The MFP defines the expected distance the vehicle can move in a straight line before 

it encounters an obstacle it cannot negotiate. This can be expressed in units of vehicle 
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scale, for example turning circle diameter. Then a large MFP can be interpreted as 

the vehicle's ability to traverse in the terrain. A small MFP means that the terrain is 

impassable. 

MobSyn (Mobillity Synthesis)

MobSyn  is  used  in  the  RPET simulation  software  to  compute  the  configuration 

equations for the chosen locomotion type and to yield the ideal wheel/track width 

and wheel diameter for the desired performance. These calculations are made on the 

basis of motion resistances, power/torque availability, terrain, etc. that are inputs to 

the system. 

 2.3 Related Frameworks

This  section  provides  a  short  overview of  the  different  frameworks  used  in  the 

mobile  robot and planetary rover simulators.  These frameworks form the core of 

these  simulators,  and  so  their  performance  characteristics  ultimately  define  the 

usability of the tools developed on top of them. 

 2.3.1 DARTS

DARTS is a high fidelity, flexible multi-body dynamics simulator that is used for 

real-time hardware-in-the-loop design, testing and integration of spacecraft software. 

DARTS is written in ANSI C and developed by Jet Propulsion Laboratory of NASA. 

It uses SOA mathematical framework for solving multi-body dynamics. Its flexibility 

is  demonstrated  by  its  extensive  use  in  NASA applications  and  also  by  totally 

unrelated projects, such as the solving the dynamics of large-scale molecular systems 

in the NEIMO software project (A. Jain n.d.).

DARTS won the NASA software of the Year award in 1997 as a technology enabler, 

and for saving over 10 million dollars on NASA missions. It has been used on the 

Cassini, Galileo, Mars Pathfinder, Stardust, New Millennium, and Neptune Orbiter 

projects (Curto n.d.).

The system takes a text input file that is read at runtime and specifies the bodies that 

make up the spacecraft and the hinges that connect them. The bodies are connected 

as a tree topology, with the root of the tree as base and different parts as nodes. 

Because the model data is not hard-coded it is possible to construct models easily for 

different missions. Models can also be changed without recompiling the source code 

(Biesiadecki, A. Jain, & James 1997).
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 2.3.2 DSHELL (DARTS Shell)

DSHELL is a C++ model library for DARTS. It is portable from desktops to real-

time hardware-in-the-loop simulation environments. It includes libraries of several 

hardware models, for example sensors, motors and encoders. The library includes 

extensive instrumentation so that  the user  has  high visibility  into the simulation, 

yielding  high  effectiveness  as  a  design,  development  and  testing  tool.  Actuator 

models interface directly with the DARTS simulator, for example by applying forces 

to model nodes (thrusters), or attaining information from the node (sensors). Motors 

can be attached to the hinges to move the bodies that are connected by that hinge. 

DSHELL was also been used as a basis for the Cassini High Speed Simulator (HSS) 

which will be used to test command sequences prior to uplink  (Biesiadecki et al. 

1997).

 2.3.3 ODE

Open Dynamics Engine is a free rigid body dynamics library with collision detection. 

It is currently used in the majority of commercial and open source robot simulators 

and games, the developers reporting over 1000 applications. It is quoted to be fast, 

robust  and  stable  when  simulating  articulated  rigid  body  dynamics  with  hard 

contacts. The ODE collision engine can also be replaced with other options (such as 

the Bullet)  if  the user deems this necessary. ODE uses first  order integration for 

speed  and  stability. This,  however, means  that  ODE is  not  accurate  enough  for 

quantitative engineering. (Smith n.d.)

Illustration 5: Data flow in a DSHELL simulation.
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 2.4 Conclusions

Mobile robot or planetary rover simulator structure depends highly on the planned 

usage of  the  simulator. Normal  mobile  robot  simulators  tend to be more  general 

whereas planetary rover simulators can be programmed for very specific tasks, such 

as determining optimal wheel diameter or axle length. As with other software, best 

practices  still  remain  rather  uniform  regardless  of  software  type.  The  general 

structure of a simulator is presented in illustration 6.

Object-orientedness, modularity, scalability, platform independence and open source 

paradigms tend to create software that is both extensible and flexible. 

An issue that is in focus in planetary rover simulator development is the wheel-soil 

interaction. This is understandable as alien planets are very hostile environments for 

robots and even a small error can cause a mission to fail. On the other hand, this is a 

feature that is completely lacking from terrestrial mobile robot simulators. This is 

probably  because  earlier  mobile  robots  tended  to  move  inside  buildings,  and 

autonomous  outdoor  robots  are  still  relatively  rare.  Including  the  wheel-soil 

interaction in a terrestrial robot simulator would yield a novel software. A feature 

that can be found in most of the terrestrial simulators is the possibility to genuinely 

Illustration 6: General mobile robot 
simulator structure.
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interact with the environment. This is not included in the planetary rover simulators 

as it has not yet been part of mission parameters to move rocks etc. 

It is also a feature in the simulators to have a distinct physics/collision library. The 

benefit of this is that the library can be independently developed and even replaced if 

a better alternative appears. Furthermore, storing the information in a database makes 

report  generation  and  simulation  validation  easier. Models  should  be  input  in  a 

standardized, human-readable format without a need for software recompilation. It is 

also imperative that the software is user friendly and provides information at a level 

that  is  detailed enough to support  the user's  research. This means that  individual 

forces/torques/voltages/etc. should be easily observable. 

Thus, it is possible to form a list of features that identifies a good quality mobile 

robot simulator:

• On target

The software should be developed with the end user in mind,  taking into 

account his needs and wishes.

• Open Source

Open source software brings many great advantages. First of all, the code is 

verifiable  by  members  of  the  scientific  community  and  thus  gives  more 

credibility to the tool. Secondly, it is possible to use some of the vast amount 

of open source libraries available.

• Modular

Modular code makes it possible to use the best libraries available and change 

them if necessary; it also promotes code reuse.

• Flexible

The software modules should be as flexible as possible, as this encourages 

other  developers  to  contribute  to  the  code and also  improves  the  general 

quality of the code.
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• Parametrized

Good  quality  software  enables  the  user  to  make  changes  in  the  way  the 

software operates without the need for recompiling the program. This can be 

achieved by placing as many program parameters to human readable text files 

as possible.

• Platform independent

A good quality code should be programmed so that it can be run on different 

platforms.

• Real-time ready

It should be possible to run the simulator in real time with operator-in-loop.

• Connected to actual hardware

It should be possible to connect the simulator to real robot equipment to make 

hardware-in-the-loop simulations possible.

• Verifiable

The accuracy of the simulator must be stated.
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 3 SimPartner Framework
This chapter presents a description of the SimPartner framework which is the central 

element of this thesis. A framework means a re-usable software system that consists 

of  libraries,  definition  files,  and  so  on,  used  to  solve  a  complex  problem.  Its 

development  was  driven by the research presented in  the  previous chapters.  The 

detailed structure of the software framework is illustrated in a UML sketch that can 

be found in appendix 2.

The first section is an overview of the SimPartner itself, followed by a description of 

the  physics  library. The  third  section  introduces  the  database,  followed  by  the 

environment  definition  method.  After  this,  the  robot,  sensors  and  actuators  are 

described. The eight section introduces the window manager subsystem, followed by 

robot modelling and the clients used to control the robot.

 3.1 Overview

SimPartner is an object-oriented dynamic robot simulator which combines several 

existing  open  source  libraries  and  technologies  to  create  a  versatile  simulator 

framework. The open source projects included are:

● Open Dynamics Engine.

● Boost, peer-reviewed, portable C++-libraries that are becoming a part of the 

future C++ standard. The Boost libraries used include:

• UBLAS – Basic Linear Algebra.

• PO – Program Options, enhance command line and text file parameter 

usage.

• Graph – Node and vertex graph implementation.

• Lexical Cast – Lexical casting of characters to numbers and vice versa.

• Pointer Vector – A convenient way to store objects.

• Asio – Asynchronous input/output, contains an implementation of tcp/ip 

communication protocol.

● libxml/libxml++, XML parser.

● MySQL++, C++ wrapper for MySQL 's C API.
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● SDL, a multimedia library that provides low level access to audio, keyboard, 

mouse, joystick and 3D hardware using

• OpenGL, high performance graphics library.

• GLU, OpenGL Utility Library.

• GLUT, OpenGL Utility Toolkit.

● MySQL Database, the world's most popular open source database.

A detailed table of library versions can be found in appendix 3. SimPartner features a 

modularized design that allows the user to change parts of the code without having to 

reprogram the whole framework. This modularized structure is general practice in 

software engineering and can also be seen in the cases shown earlier. The modules in 

SimPartner are:

● SimPartner Main

SimPartner  main  program  creates  the  executable  application.  Reads  in 

simulation  parameters  from  the  properties  file.  Handles  communication 

between the different modules of the framework.

● XML Parser

Receives the files containing the environment and robot specifications from 

the main program. Validates the files against the DTD provided. Parses the 

simulation world specifications (gravity, surface plane) and the environment 

and robot bodies, joints, etc. 

Illustration 7: Modularized structure of 
SimPartner.
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● ODE Model

Encapsulates  the  ODE  in  classes.  Handles  communication  between  the 

SimPartner framework and the Open Dynamics Engine. Keeps the internal 

storage  of  the  bodies  pose,  velocities,  etc.  ODE  models  of  sensors  and 

actuators also include an implementation of the TCP/IP communication stack 

that  allows the user to control  the robot and monitor it's  state through an 

external software. 

● Window Manager

Shows  the  simulation  results  to  the  user  using  OpenGL graphics  library. 

Receives  input  from  the  user  through  the  keyboard  and  passes  the  user 

commands on to the main program.

● Control software

Modeled  robots  can  be  controlled  with  separate  control  software  using  a 

TCP/IP-based client/server architecture, explained in detail in section 3.7.

● Data analysis

The  simulation  data  that  accumulates  in  the  database  must  be  analysed 

somehow. Due to the wide user base of the MySQL database software there 

exist several ways this can be done. For details see section 3.4.2.

There is a lot of simulation data that needs to be updated for every simulation step. 

This is done partially by using standard C++ data types such as arrays and vectors. A 

homogeneous transformation entity is used for storing the position and orientation 

information of the bodies in the simulation. A homogeneous transformation is a 4x4 

matrix that stores the position and orientation of the body.  

T=[R00 R01 R02 px

R10 R11 R12 py

R20 R21 R22 pz

0 0 0 1
]  (1)

Orientation is stored in a 3x3 rotation matrix. This is a real special orthogonal matrix 

of which the transpose is equal to its inverse and has a determinant of 1. Rotation 

matrix has many useful properties and is extensively used in control theory. 
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 3.1.1 Parametrization

As  shown  in  the  literature  review, a  high  quality  simulator  software  should  be 

parametrized. This means that it should be possible to change the behavior and usage 

of  the  simulator  without  the  need  for  recompiling  software.  In  SimPartner  this 

parametrization is extended to many levels. The core parameters are stored in the 

properties file which can be defined in the command line when starting the software. 

Thus the user can have several property files ready and use the one which is most 

convenient.  The  default  file  is  parameters.txt residing  in  the  application  root 

directory. Parameters  read  from  the  properties  file  can  also  be  overridden  with 

command line arguments.1

 3.2 Open Dynamics Engine details

ODE  was  already  briefly  mentioned  in  section  2.3.3 but  for  understanding  its 

behavior and limitations a more detailed overview is necessary. The purpose of this 

section is to provide understanding of the ODE core dynamics modeling principles. 

The mathematical  concepts used in  the  modeling are presented and the  resulting 

capabilities  and  constraints  are  elaborated  to  provide  understanding  of  ODE's 

potential  to  model  different  applications.  This  section  is  based  on  (Smith  n.d.), 

comments in the engine source code, and the project wiki-page2.

 3.2.1 Bodies and geoms

ODE is a rigid body dynamics simulator. It uses two different concepts for simulating 

the  dynamics  and  collisions.  A  body  is  an  object  that  has  certain  immutable 

properties, such as mass and an inertia matrix. The body also stores information on 

properties that change over time, such as pose and linear and angular velocities. A 

body is dimensionless and for collision detection purposes we need another concept, 

1 See ODE manual for the details of the parameters used in the file.
2 http://opende.sourceforge.net/wiki/index.php/Main_Page

Code example A: Part of a properties file.

dbname=simpartnerdb
dbserver=localhost
log=FALSE
logEveryStep=FALSE
environment=template.xml
stepsize=0.001
contactMaxCorrectingVel=0.2
contactSurfaceLayer=0
autoDisableFlag=TRUE
globalERP=0.2 #Common values are 0.1 ... 0.8
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a geometry object, geom. Geoms store spatial properties for various different shapes, 

such as spheres, cylinders, planes, etc. If a body is connected to a geom it moves 

dynamically, following newtonian mechanics. Otherwise it is immovable, such as a 

ground plane in the simulator.

 3.2.2 Joints

Joint  is  an object  that  attaches two bodies  to each other  with  certain degrees of 

freedom. The number of joints in ODE is constantly growing; when this thesis was 

written there were at  least  fixed, prismatic (slider),  hinge, ball-socket,  and motor 

joints. There also exists a special type of joint used for collisions which is presented 

in a separate paragraph. A joint transfers force and torque between the two bodies, 

making it possible to create more complex structures. A joint can also have constraint 

parameters, that further limit the amount the bodies can move with respect to each 

other.

Motor joints can be linear or angular, they have a special velocity and maximum 

force parameters that can be used to make controllable parts in the simulation. It is 

also possible to create motors that move to a specified position because the motors 

store their pose wrt. the original orientation and position. 

 3.2.3 The simulation loop

ODE is used with fixed time steps. For every simulation step, the same actions are 

performed  for  all  the  bodies  and  geoms.  The  simple  overall  action  sequence  is 

collide, step, destroy. First of all, possible collisions are culled by checking whether 

Axis-Aligned Bounding Boxes (AABBs) attached to geoms intersect with each other. 

After this, geoms that actually collide are connected in the contact points that create 

separate contact joints.

When the collision checking is done, the ODE simulation space is integrated for one 

step.  Bodies  in  motion  move  and  bodies  that  are  connected  with  joints  transfer 

momentum  to  each  other. The  final  step  destroys  the  contact  joints  created  by 

collisions.  After this the new information about bodies (position, velocity, forces, 

etc.) is passed on and the process starts over. 
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 3.2.4 Collisions

As mentioned above,  geoms that  intersect  generate contact  points.  When contact 

joints  are generated from these points  several  parameters  can be introduced.  For 

example, maximum penetration, coulomb friction coefficients in two perpendicular 

directions, bounciness and other parameters that affect the collision can be defined. A 

collision is shown in illustration 8.

The amount of force which the contact joint delivers to the colliding bodies depends 

on the amount of interpenetration between the geoms. This can cause simulation 

instabilities if the parameters are not precisely fixed and the time step set to be in the 

correct region (approximately 0.02 – 0.001 seconds per step).

 3.3 Physics engine wrapper

The ODE engine is currently in version 0.10 maturity. There are several things that 

are  either  not  implemented  or  not  guaranteed  to  work  stably, such  as  Cylinder-

Cylinder collisions and variable time-step iteration. Some of these deficiencies can 

be  remedied  by  simple  workarounds  or  design  choices.  For  example,  a  way  of 

combining the fixed time-step simulation with a variable-time step visualization is 

shown  in  illustration  9.  When  the  simulation  is  done  this  way  two  things  are 

achieved. First, ODE behaves deterministically in that the same simulations always 

yield the same results if no outside input is introduced to the system. Second, lag 

caused  by  components  not  directly  related  to  the  simulation  (for  example  slow 

database connections) will not affect the simulation but rather the user experience. 

Illustration 8: A collision, picture source 
(Smith n.d.). 
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 3.4 Database

All the necessary data obtained from the physics simulation is stored to a MySQL 

database  if  the  user  so  desires.  The  data  storage  is  controlled  with  a  simulator 

property file entry. Storage can be done either every simulation step or every screen 

refresh step. There are several reasons which justify using a database instead of a text 

or a binary file. These reasons include:

1. ACID(Atomicity,  Consistency,  Isolation,  Durability)-properties.  These  are 

database properties that guarantee information validity at all times. 

Atomicity means that if all of the tasks of a transaction are not performed, none 

of them are. 

Consistency means that the database will be in a correct state when transactions 

begin and end. This will uphold database integrity.

Isolation means that all transactions are separate from each other. This makes 

database processes serializable.

Durability means that all transactions will persist. All information will survive 

a system failure or a program crash if they are committed to the database.

Illustration 9: Fixed time 
step simulation with variable 
time visualization.



29

2. SQL-queries

SQL provides an easy yet powerful interface to simulation data. 

3. Integrability

MySQL databases  can  easily  be  integrated  to  several  existing  applications. 

Simulation data can be accessed with Matlab applications locally (with separate 

software), over a web interface globally or a direct network connection can be 

directly made to the database, whichever way is most convenient.

Data can be stored in the database either every simulation step or every visualization 

step. Storing  every simulation step slows the simulation considerably and is only 

used  to  validate  the  physics  model  in  simple  cases,  such  as  falling  bodies.  The 

structure of the SimPartner database is presented in appendix 4.

 3.4.1 Selected Tables

This section describes the database structure and the way the data is stored to the 

database. The database is the main interface for the user to access the simulation 

results and so it is necessary to explain clearly the way the data is stored. 

Body

The body table stores information on the physical properties of the body in question, 

such  as  the  physical  dimensions  and the  type  of  the  the  body. Furthermore,  the 

location of the center of mass (in body coordinates) and the inertia tensor are stored. 

The inertia tensor is a 3x3 matrix that stores the moments of inertia of the body with 

respect to different global frame axes. The inertia tensor is automatically calculated 

for standard object types by ODE but it can also be redefined if necessary.

Pose

Pose refers to the position and orientation of a body in a given coordinate system. In 

the SimPartner framework, the pose of all bodies is stored in the database. While 

homogenous transformations are used internally in the software, the rotation  data is 

stored in axis-angle format to the database. Homogenous matrices are powerful and 

easy  to  use  when  calculating  rotations  and  translations,  but  they  have  many 

redundant parameters and it is impossible to infer the pose of the object by looking at 

the transformation. The axis-angle representation, however, is a virtual opposite in 
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the  way  that  it  is  very  easy  to  visualize  but  hard  to  combine  mathematically. 

Furthermore,  in  this  representation  the  information  is  presented  with  only  four 

variables, whereas a rotation matrix needs nine. 

The pose of a body is stored in

P=〈 position ,axis , angle〉=p , e , , where

p=[ px

p y

pz
] , e=[ex

ey

ez
] .  (2)

The rotation axis and angle describe the orientation of the frame with respect to the 

global frame. The axis parameters are the coefficient of a (normalized) vector around 

which the object is oriented. The angle parameter corresponds to the angle the object 

is rotated around this vector. There exists a set of formulae to form a conversion 

between a rotation matrix and the axis-angle parameters. Given a rotation matrix 

R=[R11 R12 R13

R21 R22 R23

R31 R32 R33
]  (3)

the rotation angle can be calculated with

=cos−1
R11R22R33−1

2
  (4)

and the rotation axis with

[e x

e y

e z
] =

1

R21−R12
2R02−R20

2R10−R01 
2 [ R32−R23

R31−R31

R21−R12
]  (5)

Illustration 10: Position, axis and 
angle representation.
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This transformation is singular when =0∨rad  . This singularity means that 

the  object  frame is  aligned to the global  frame.  If  theta  equals  zero the  rotation 

matrix is an identity matrix. In this case the angle is zero and the axis can be freely 

chosen. In SimPartner the a axis vector is  e=[100 ]T . If theta equals pi it means 

that the object frame is aligned with the global frame but some of the vectors are 

reversed with respect to the global frame. In this case the vector is determined by 

looking at the signs of the elements of the rotation matrix. 

For  example,  if  a  frame  is  set  to  rotate  at  a  constant  angular  velocity  of 

=[111]T the  rotation  axis  is  e=[± 1

3
,± 1

3
,± 1

3
]
T

. The  rotation  angle 

grows continuously until the value reaches pi. Then the frame flips around over the 

singularity and decreases back to zero.

Force and torque

The force and torque table stores information received from ODE that affects the 

forces and torques applied to a body in a given simulation step through the collisions 

detected. This data can be used to validate the correct operation of the physics engine 

and also to monitor whether the forces exceed the material strength of the body in 

question.

 3.4.2 Data analysis

For  efficient  control  code  programming,  the  user  should  be  able  to  analyse  the 

accumulated simulation data easily. Fortunately, there are several ways to achieve 

this due to the wide acceptance of the MySQL database software. The simplest way 

to access the data is to use a SQL client where the queries can be typed and the 

resulting rows can be copy-pasted to a spreadsheet program. This is the way the data 

in this thesis was generally analysed. 

However, there are more sophisticated ways to do the analysis. Matlab offers a wide 

Code example B: Accessing the database from Matlab.

conn = database(dbname,username,
    password,driver,url);

data = fetch(conn,query);
time = cell2mat(data(:,1));
position = cell2mat(data(:,2));
plot(time,position);
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assortment of tools suitable for simulation data analysis. Matlab also has a Database 

Toolbox that can be used to convert database rows into Matlab workspace variables. 

With MySQL, the toolbox can be used by installing the MySQL Connector/J driver. 

MySQL Connector/J is a native Java driver that enables communication between the 

database and a client software, in this case Matlab. After installing this driver the 

user is able to access the data easily, as shown in code example B. This effectively 

integrates  all  the  analysis  power of  Matlab to the  SimPartner  framework.  It  also 

demonstrates the importance of using widely accepted methods of storing data, as 

integration with other software is very straightforward.

 3.5 Environment definition

The simulation environment (World) is defined using an XML file. The location and 

name of this file is defined in the program properties. The XML file is also validated 

against a DTD to guide the user to write conforming files that can be interpreted by 

the XML parser. The structure of an environment file is:

• Surface plane

Surface plane of the simulation world is defined with four parameters a,b,c,d 

that are the coefficients of the equation 

a∗xb∗yc∗z=d  (6)
• Gravity vector

Three components of the gravity vector of the environment g x , g y , g z .

• Collision space

Type of the ODE collision space to use. The options are (Smith n.d.):

• Simple

No collision culling, checks intersection of all pairs, O n2 complexity.

• Multi-resolution hash table space (Hash)

Uses  internal  data  structure  to  record how objects  are  positioned in  a 

three-dimensional  grid  of  cells.  Intersection  testing  has On 

complexity.
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• Quadtree space

Uses a pre-allocated hierarchical grid-based tree to quickly cull collision 

checks. “Exceptionally quick” for large numbers of objects, no 

complexity given.

• Objects

Defines  the  external  objects  of  the  environment.  These  objects  form  the 

landscape of the simulator and can be interacted with, but they offer no sensor 

data  and cannot  be  equipped with  actuators.  Objects  are  defined  by  their 

physical dimensions, rotational and translational velocities, and homogenous 

transformation matrix. An example of a body definition can be seen in code 

example C.

The XML file can store an arbitrary number of objects, thus forming the environment 

in which the robot operates. Thus far, no sensors or actuators can be placed to the 

Illustration 11: A maze. 

Code example C: Definition of a test particle at rest at 10 m.

<object type="Body" name="TestParticle">
<mass>1</mass>
<transformation> 

<T00>1</T00><T01>0</T01><T02>0</T02><T03>0</T03>
<T10>0</T10><T11>1</T11><T12>0</T12><T13>10</T13>
<T20>0</T20><T21>0</T21><T22>1</T22><T23>0</T23>

</transformation>
<translationalVelocity>

<vx>0</vx>
<vy>0</vy>
<vz>0</vz>

</translationalVelocity>
<rotationalVelocity>

<omegax>0</omegax>
<omegay>0</omegay>
<omegaz>0</omegaz>

</rotationalVelocity>
</object>
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objects, only passive environments can be formed.  Illustration  11 shows  a simple 

maze that consists of seven box objects, one cylinder object and a simple wheeled 

robot. It is also possible to define joints between objects in the environment. The 

joints are passive and are mainly included for testing purposes and building simple 

joined structures. 

 3.5.1 Terrain modeling with heightfield 

In addition to the surface plane defined earlier, SimPartner incorporates a possibility 

to model terrain features with a heightfield. If the user so desires, the heightfield can 

be set to be used in the properties file. The core of the heightfield is a height value 

matrix. This matrix stores the height values over a given set of index samples. Height 

y in matrix position (m,n) is given by 

H=[ y11 ⋯ y1m

⋮ ⋱ ⋮
ym1 ⋯ ymn

] ,where m , n≥2.  (7)

The heightfield uses depth and width values to store information about the size of the 

field in the simulation environment. In other words a field with width w and depth d 

covers an area

[
−w

2
,
w
2
] in x−direction and

[
−d
2

,
d
2
] in z−direction.

 (8)

Combining 7 and 8 it is possible to  calculate the height at points defined by the field

y i
w

m−1
−

w
2

, j
d

n−1
−

d
2
=H m ,n for

i∈1m , j∈1n.
 (9)

Illustration 12: WorkPartner on a heightfield.
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Points that reside inside the area but not at the points defined by the field are linearly 

interpolated  by  the  physics  engine.  Furthermore,  the  field  offers  parameters  for 

scaling the altitude values and setting an offset. The heightfield is thus a simple but 

powerful  way  for  the  user  to  create  a  terrain  with  a  practically  unconstrained 

accuracy. 

 3.6 Robot definition

Robots are stored as graphs where body objects are represented as nodes  and joints 

as the vertices. The robot definitions are loaded from an XML file which is validated 

against  a  DTD in  the  same manner  as  the  environment  definitions.  This  design 

approach forces the user to 

a) define robots in a syntactically correct manner where no essential information 

is left out and 

b) build  robots  where  all  parts  are  connected  with  joints  and  the  design  is 

complete in the graph sense. This means that all the bodies are connected to 

each other by some path and all joints are connected to two bodies. 

An example of a simple robot graph is presented in illustration  13. The XML file 

structure for different body types is similar to the one used to describe environments. 

Added features are sensors and actuators that enable the robot to sense and interact 

with its environment.

 3.7 Sensors and actuators

Sensors and actuators are the only way the user can directly control the robot when 

the simulation is on-line. Sensors form a hierarchy where the base class uses a TCP 

Illustration 13: Robot 
graph.
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communication  protocol  implementation  to  relay  data  with  the  client  software. 

Further functionality is defined in the derived class. 

 3.7.1 TCP/IP communication

SimPartner  uses  the  four  first  layers  of  the  OSI  model  in  its  implementation of 

sensor/actuator communication with the client software. The software itself is the 

fifth, application layer. The port of the sensors and actuators is defined in the XML 

file with two conditions:

1. The port number must be greater than 1024.

2. The port number must be unique.

The framework then reserves this port for the robot device model in question. The 

SimPartner implementation is a server model, the communication has to be initiated 

by the client software. The communication implementation uses sockets, a method of 

point-to-point  communication  defined  in  RFC  147.  This  is  a  standard  way  of 

communicating with two remote machines, but can also be used in one computer, 

which is often the case with the SimPartner framework. This approach also makes it 

possible for the user to program the client software with the programming language 

of his choice as this approach is well documented and implementations exist for most 

of the major programming languages. 

 3.7.2 Sensors

Sensors  are  always  attached  to  a  body  in  the  robot.  The  principle  of  the 

communication  protocol  of  the  sensor  is  very  simple.  When  communication  is 

established, the first  thing the sensor does is to send its information to the client 

software.  The  client  can also  send data  to  the  sensor, this  is  used to  define  the 

sensor's operational parameters. The sensor then parses the data sent by the client 

Illustration 14: first layers of  
the OSI model.



37

software and adjusts its behavior accordingly.  The advantage of this approach is that 

the client can acquire fresh sensor data easily but also use the same communication 

to control the sensor. Sensors that are initially included in the SimPartner framework 

are described below. Currently velocity and force sensors are not implemented but 

due to the modular structure they can easily be added later.

Echo sensor

This sensor simply echoes the last input command it has received to the client.  It is 

usable for testing the correct operation of the server/client interface.

Position sensor

This sensor takes the coordinates of the body it is associated with from the ODE 

engine  and passes  them to  the  client.  It  can be used for  creating simple  control 

interfaces in the client. More advanced sensors, i.e. with noise or increasing error can 

be extended from this sensor type.

Scanner sensor

A scanner sensor models a laser scanner. It has a range of 10 meters with no added 

noise or bias. Eleven sensor rays are emitted from the sensor to cover an area of ± 0.1 

radians of the z-axis in the z – x -plane of the body to which the sensor is attached. 

The angle between two emitted rays is thus 0.02 radians. The rays are primitives in 

the Open Dynamics Engine and are included in the collision detection algorithm. 

When a collision between a ray and a body is detected, no forces are applied but 

rather the distance between the starting point and the collision is calculated. This 

makes  it  possible  to  retrieve  the  distance  of  the  object  from  the  sensor.  This 

information is stored in the sensor and sent to the client when queried.  

 3.7.3 Actuators

Actuators can be built on top of constrained and prismatic joints. This constrained 

joint uses a ball joint and a motor that both connect the body parts together and make 

it possible to record its angular position with respect to the original state. It is the 

possible to control this joint to move so that a desired position is reached. The joint 

can also be set to revolve at a constant velocity or to deliver a desired force to the 

bodies it is connected to, creating an angular motor. When the actuator is built on top 

a of a prismatic joint it models a  linear motor. The joint also has stops, angle values 

with respect to all three axes that can be set to model the physical limitations of the 
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joint. These stops must be set within reasonable limits in joints that are controlled by 

angle values, otherwise the joint may become unstable, causing the robot to oscillate 

wildly.

The actuator is then modeled on top of this joint by using a structure similar to the 

one used in the sensor, described above. Initially all actuators are set to a state where 

the actuator tries to keep its original position and orientation with a force of 1000N 

on each axis. When a command is sent to an actuator, it responds with its previous 

state  and  records  the  new  state  if  the  command  is  recognized  to  be  within  a 

predefined communications format. 

Joint controller

Joint controller is a motor that controls the angular velocity of the bodies to which it 

is attached. It accepts three maximum force values (in newtons) and three velocities 

(in radians per second) as an input1 and sets its internal parameters accordingly. The 

maximum force values reflect the greatest force per joint axis which the controller 

can use to achieve the desired velocity. 

Angle controller

Angle controller can be used to set a motor to a desired angle. It incorporates a PID-

controller  with  anti  wind-up  protection.  The  input  for  this  controller  is  three 

maximum force values, three angles and the values for P, I and D parameters2. 

 3.8 WindowManager, visualization and control

SimPartner framework uses OpenGL to visualize the simulation to the user. OpenGL 

offers platform-independent graphics functions that are designed to be versatile but 

still easy to use. The terrain and the robot can be plotted in several different ways, 

either as a wireframe or with solid faces.  Object  frames and forces affecting the 

bodies can also be plotted. The camera can be controlled by freely moving it through 

the space or it can be set to follow the robot. 

The SDL library is used to pass commands from the user to the framework. SDL 

offers a set of events generated by the keyboard, mouse or operating system. User 

interaction can be achieved by programming functionality based on these events.

1 Message example: <1000,1000,100,0,0,0.2>
2 Message example: <1000,1000,100,0,0,0.1,0.5,0.1,0.1>
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 3.9 WorkPartner model

The robot is modeled by using the latest available CAD model of the robot drawn in 

1999.  The configuration information and measurements were read from the model 

and translated into a robot XML file described in section 3.6. Due to the complexity 

of the model, the robot was modeled in different generations, which are described 

further. The idea behind this design approach was to validate the correct functionality 

of each design iteration before new parts were added.

 3.9.1 Generation 1

The first generation model of the robot  contains the wheels and supporting structures 

for the undercarriage. The wheels and other joints have simple motors that can be 

used to drive the robot. The fact that the wheels of the WorkPartner robot are not 

steerable causes added complexity to the steering system. The robot chassis consists 

of two independent halves and has an intricate lever system that is used to split-steer 

Illustration 15: WorkPartner CAD model.

Illustration 16: 1st generation model.
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the vehicle. This means that the two halves of the robot can be adjusted to be at an 

angle with respect to each other, causing it to turn when the wheels are spinning. In 

the first generation model, this system is modeled with one hinge joint that can be 

twisted to achieve split steering.

The model was primarily used to confirm the correct operation of the remote actuator 

control  over  the  TCP/IP  system  using  a  gamepad  controller.  The  wheels  were 

controlled with a joypad where forward/backward commands increased the rotational 

velocity of the wheels and left/right commands caused the central joint to turn for a 

prespecified  amount.  Other  leg  joints  can  also  be  controlled  to  change  the 

configuration of  the robot.  This  client  can also be used with models of the later 

generations.

 3.9.2 Generation 2

The second generation model incorporates a front support and a torso that has a laser 

scanner model and a position sensor. The torso can be rotated using a simple angle 

controller. This robot can sense its environment and could be used for creating crude 

SLAM  navigation  clients.  All  other  joints  and  motors  are  the  same  as  in  the 

generation 1 model. 

Illustration 17: 2nd generation model.
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 3.9.3 Generation 3

For the third generation, manipulators are attached to the torso. The manipulators 

consist of upper and lower “arms” plus a pair of claws. The part that is connected to 

the torso and the lower part are connected using simple angle controllers so that the 

positions of the manipulators can be controlled accurately. The wrist that connects 

the claws to the arms can be turned. Both sides of the claws can also be controlled 

independently of each other with three degrees of freedom.

 3.9.4 Generation 4

The actual WorkPartner robot is tilted to the left and has a power pack on the back of 

the  robot.  So  for  the  validation  against  real  WorkPartner test  results  a  more 

realistically balanced model was created. It is no longer symmetrical, the torso is 

shifted five centimeters to the left and the masses of the parts have been altered to 

make it compatible with the actual robot. Furthermore, a rear support and a weight 

have been sited to make the weight distribution resemble that of the actual robot.

Illustration 19: 4th generation model.

Illustration 18: 3rd generation model.
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 3.10 SimPartner clients

Due to the versatile TCP/IP control structure and the standardized communication 

protocol for sensors and actuators, it is easy to create different programs to control 

the  robot.  The  control  methods  created  within  the  scope  of  this  thesis  are  the 

interactive client and the sequencer client.

 3.10.1 The interactive client

The first client developed for the SimPartner framework was the interactive gamepad 

client. The test setup for this client is shown in illustration 20. The client runs on a 

Linux PC and the commands are input using a game controller that is connected to 

the computer's USB port. The client software transforms the commands into values 

that  are  encapsulated  into  the  communication  protocol  and  transferred  to  the 

simulator over a local network. The advantage of this approach is that it allows an 

easy way to test new object/joint configurations and other types of fast prototyping. 

It was also useful in the development phase of the simulator software, as changes can 

be made easily and the effects observed visually. 

Illustration 20: Test setup for the gamepad client.
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 3.10.2 The sequencer client

The sequencer client takes an XML-file as input and parses it. After this it sends the 

commands to the robot. The client is thus not interactive but rather meant to be used 

to  create  complex  command  sequences  that  would  be  impossible  to  perform 

accurately using the interactive  client.  Furthermore the  sequencer client  makes it 

possible to run the exact same series of commands several times, for example with 

different environmental parameters. The user needs only to type in a new version 

number to the XML file and program the relevant parsing code to the file. See code 

example D for details on sequencer client code. Version 1, which is included with the 

SimPartner framework, is a simple sequencer in which commands can be sent to the 

client and which has built-in pausing and repeating commands. The commands sent 

will be valid until the next command arrives. For example, if a certain wheel motor 

velocity is set the motor will rotate with this velocity until the new velocity is given. 

Code example D: Control sequence.

<command>
<commandString>1000,1000,100,0,0,0</commandString>
<port>1028</port>

</command>
<command>

<commandString>1000,1000,0,0,0,0</commandString>
<port>1030</port>

</command>
<command>

<commandString>0,0,-0.2,0.5,0.1,0.1</commandString>
<port>1044</port>

</command>
<command>

<commandString>2</commandString>
<port>0</port>

</command>
<command>

<commandString>1000,1000,100,0,0,0</commandString>
<port>1030</port>

</command>
<command>

<commandString>1000,1000,0,0,0,0</commandString>
<port>1027</port>

</command>
<command>

<commandString>0,0,-0.2,0.5,0.1,0.1</commandString>
<port>1041</port>

</command>
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 4 SimPartner Performance 
This chapter describes the performance of the SimPartner framework by introducing 

a series of tests done with it. The results are compared against mathematical models 

and real test data to validate the accuracy and realism of the simulator. 

 4.1 ODE accuracy

 4.1.1 Integrator

The accuracy of the Open Dynamics Engine can be verified by a series of tests that 

can be compared against theoretical result values. The simplest of these tests is to 

check the integrator accuracy using a test particle in free fall with earth gravity g. A 

test  particle  was  positioned to an  altitude  of  500 meters  and the  simulation was 

started. The results were then compared with values computed with the formula

h t =h0−
1
2

g t 2  (10)

that describes the ideal free fall motion. The results of this test are shown in Figure 1. 

It  can be seen that  the  error  increases  linearly  as  a  function of  time.  This  is  an 

expected  result  as  ODE  uses  1st order  Euler  integration.  The  step  size  of  the 

simulation was 0.001 seconds and the resulting error can be described with a linear 

integration error coefficient

Figure 1: Incrementing error of a body in free 
fall.
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e t ∝e t∗t ,where
e t=0.00489m /s .

 (11)

When the simulation is  repeated with different time step lengths as illustrated in 

Figure 2, a more general error estimate can be formed. There is a linear correlation 

between the integration error coefficient and the time step length. This is again an 

expected result as ODE uses first order integration to solve the positions of bodies. 

Integration error coefficient can be approximated with

e t  t ∝eh∗ t , where

eh=4.9050 m /s2  (12)

As can be seen, this coefficient is almost exactly half of our gravitational constant. 

The magnitude of the force applied to the body also affects the error. To test this, a 

free fall simulation is run with the gravitational constant value of 50. The simulation 

yielded an integration error coefficient of  0.025 with time step of 0.001. This is an 

expected result as it is approximately five times larger than our previous result, as is 

our force. The compounding integration error can thus be approximated to be

e t ∝
F
2
∗ t.  (13)

Figure 2: Effect of time step on integration error coefficient.
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This yields the result that to keep the simulation accurate it is necessary to keep the 

time steps and affecting forces as small as possible,  as was expected. Also to be 

noted is the fact that motion with constant velocity is simulated with near perfect 

accuracy. To test this, a body was simulated with a velocity of v=10,10 ,0. The 

vertical  position  error  grows  linearly  as  before  but  the  horizontal  position  error 

remains zero. This is shown in figure 3.

 4.1.2 Friction 

ODE uses the Coulomb friction model. In this model two friction forces can be 

defined. Tangential friction is directly proportional to the normal force and opposite 

to the velocity vector. Normal friction is perpendicular to the velocity vector and can 

be used to make vehicles skid in turns. It is thus assumed that the mass and contact 

surface area of the object do not affect the velocity change but rather that the velocity 

should decrease linearly depending only on the gravity and the friction coefficient, 

following the equation 

v t =v0−g t.  (14)

Figure 3: Falling body with initial velocity.
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friction.
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To assess how well ODE simulates friction, a simulation setup was constructed in 

which a (1x1x1m) cube weighing 1kg is set up with an initial velocity of 10m/s. 

However, an interesting behavior is observed in the simulation. The velocity error 

does not grow linearly as before, but in a stepwise manner. This behavior cannot be 

explained by any physical processes but rather it has to do with the  implementation 

of ODE. This behavior is shown in Figure 4. Most likely it is due to the fact that the 

object is not sliding with constant contact points but rather bouncing slightly as the 

contact forces are not evenly distributed over the contact surface. This would cause 

impulses and torques acting on the object.

Figure 4: Velocity difference of a sliding cube with friction.
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 4.1.3 Collision

The accuracy of the collision engine was determined by colliding two spheres with 

identical mass and equal but opposite velocity vectors and starting positions. The 

goal of the simulation was to create a perfectly symmetrical and elastic collision 

between the two spheres. All error correction and bounciness parameters were set to 

zero. Figure 5 depicts the trajectories of the spheres. It can be seen that the collision 

takes place in the predicted altitude and position, with the distance of the centers of 

mass being 1.0 which is equal to two times the radius of both spheres. 

The collision, however, is not ideal. The velocity of sphere 1 (right) is slightly higher 

than that of sphere 2. This causes the sphere to bounce back with a greater velocity 

and  even  bounce  from the  ground  plane.  This  in  turn  causes  asymmetry  in  the 

positions of the spheres. This behavior is illustrated in figure  6, where initially the 

positions of the two spheres are perfectly symmetrical. After the spheres come in 

contact  with  the  ground plane  the  asymmetry  starts  to  grow  ad infinitum as  the 

rolling friction is not used and the velocity of the spheres is different.

Figure 5: Collision of two spheres.
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 4.2 Robot behavior

As described in section 3.9, the robot was modeled in several different generations. 

These  models  were also validated in parallel  with the  development.  This  section 

describes the validation tests made with the models. The validation was done mostly 

against mathematical models due to the fact that there exists only a limited amount of 

test data on the actual robot. However, the final validation was made against the test 

data  (Leppänen 2007).

 4.2.1 Generation 1 – driving a circular path

The simulation was started and the robot was turned so that smallest possible turning 

circle radius was achieved. The robot was then set to drive on a circular track using 

the gamepad client and the body part positions stored in the database. Robot leg 

position data was then extracted from the database (see appendix 5) and the robot leg 

coordinates averaged to obtain the trajectory of the center of the robot. The results 

were that the robot travelled a circular path with turning circle radius of 4.30 meters 

shown in figure 7. The result was obtained using the friction values of 0.5 and 1.0 for 

tangential and normal friction, respectively. 

Figure 6: Asymmetry of the collision of two spheres.
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The geometrical center point of the robot is the turning center. Thus both wheel axes 

point to the center of the circular trajectory (see illustration 22). From this symmetry 

it  is  possible  to  deduce  the  turning  radius  using  the  sine  rule  and  properties  of 

triangles. This simplified trajectory assumes that there is no skidding of the wheels 

and  that  the  steering  angle  stays  fixed  for  the  whole  duration  of  the  maneuvre. 

Calculating the theoretical turning radius of the vehicle makes it possible to assess 

and verify the simulation. 

The turning radius of the robot can thus be calculated with

Figure 7: Trajectory of the robot when driving a circular 
path.
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radius of a vehicle with 
split steering.
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r=
a sin−sin 

−
2



sin

2
sin 

.  (15)

Which can be further simplified to

r=
acos 

1
2


sin 
1
2


= a∗cot 
1
2
.  (16)

When the turning radius is calculated using (16),  using the predefined steering angle 

=0.2972 rad and the axle length a=0.6 m the result is 4.01 meters. The error 

in  turning  radius  is  0.29  meters  or  6.7% which  shows that  there  are  significant 

unidealities  associated  with  the  simulation  when  using  the  parameters  described 

above. The main reason for the error is the fact that the speed of the wheels cannot be 

accurately controlled using the gamepad client. All the wheels are turning with the 

same velocity, whereas the inner wheels should turn slower than the outer ones. This 

explains the fact that the simulated trajectory has a larger radius than the calculated.

To further test the turning behavior the velocities of the wheels must be considered. 

The  inner  wheels  travel  a  shorter  distance  and  since  the  robot  does  not  have  a 

differential  the  velocities  must  be  calculated manually. The  distances  the  wheels 

travel can be determined from

d i=2 r
d o=2 ra ,

 (17)

where r is the radius of the circle and a is the axle width. From this it is possible to 

derive 

v=
d
t

⇒v i=
2r

t
, vo=

2ra
t

v i

vo

=

2 r
t

2 ra
t

=
r

ra

vo=v i
a
r
1 , when r  a.

 (18)

To test this the turning angle is set to =0.2 rad. This corresponds to a turning 

circle radius of r=5.98m. The inner wheel pair velocities are set to be 
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v i=1.00
m
s

, thus giving us the outer wheel velocity vo=1.10
m
s

.

This configuration was tested using the sequencer client and the simple angle 

controller. The central joint was turned to the desired angle and the wheel motors 

started. The accuracy of the simulation improved dramatically. 

The simulation lasted for nearly two minutes, generating over 346 000 rows in the 

database. This means that there is a large amount of data that can be analyzed to 

verify the simulation. First, the path of the center of mass of the robot was calculated 

as above. The trajectory was very close to the estimated one, generating a circle with 

a radius of 5.9516 meters and a radius error of 2.8 cm or 0.5%. The center point of 

the fitted circle is (-0.0292,-5.9512) and so the error is also about the same in this 

respect. 

Figure 9 shows the error compared to the fitted circle as a function of time. The error 

is large at the beginning as the vehicle is only turning its central joint and is not yet 

travelling in the desired trajectory. The error then decreases for some time until it 

starts to increase again. A slight oscillation can also be detected. It can be noted that 

the accuracy is very good and the track remains circular up to within one millimeter 

throughout the whole simulation.

Figure 8: Circle fitted to the data points of the trajectory.
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 4.2.2 Generation 2 – a moving laser scanner

The second generation robot model includes a torso with a simple laser scanner and a 

position sensor. The torso of the robot is turned with a constant angular velocity of 

=0.01
rad
s

The simulation environment has a wall set at a distance of six meters 

from the robot center, which gives L=5.335m from the scanner. 

Figures 29 and 30 in appendix 6 show the sensor readings while the robot is turning. 

Sensor rays that are pointing away from the turning direction show first a decrease in 

the  measured  distance,  then  the  distance  starts  to  increase.  The  rays  that  point 

Figure 9: Error as a function of time in a circular trajectory

Illustration 23: A moving laser 
scanner.
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towards  the  turning  direction  show  a  steady  increase  in  the  distance,  which  is 

expected.  In  the  situation  described  above  the  distance  measurement  can  be 

calculated with

d=
L

cos
=

L
cos 0− t 

.  (19)

The sensor error behavior is shown in figure 10. After an initial jitter, the error grows 

linearly. This is consistent with the integrator error of the ODE and offers an insight 

to the best possible accuracy that any ODE sensor can achieve. The error levels are 

also  proportional  to  the  distance  to  be  measured,  meaning  that  the  longer  the 

distance, the greater will be the relative error. 

 4.2.3 Generation 3 – Manipulator

In this generation, the WorkPartner model includes all the essential parts of the actual 

robot. The first validation done to this model was a test in which the robot advanced 

towards a pole held on the top of two cubes. The robot then picked up the pole, 

advanced towards another pair of cubes and laid down the pole smoothly so that it 

remained on top of the other pair of cubes. This validated the ability of the simulated 

robot to perform a complex task. 

Figure 10: Distance scanner sensor error.
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The  sequencer  client  was  used  for  this  simulation.  The  command sequence  was 

completely  passive,  no  sensor  data  was  used to  guide the  robot.  In  practice  this 

means that the command sequence was done in steps,  with motor on/off commands 

and pauses. The command sequence was

● Simulation start. 

● Open claws, raise and twist the manipulators so that the claws are aligned 

correctly. Turn wheel motors on.

● Drive for a specified amount of time, then turn wheel motors off.

● Close claws.

● Raise manipulators.

● Wheel motors on.

● Drive for a specified amount of time, then turn wheel motors off.

● Lower the manipulators 

● Open the claws

● Wait for a specified amount time to allow the pole to stop moving.

● Wheel motors on backwards

The  purpose  of  this  validation  was  to  prove  that  SimPartner  is  able  to  perform 

complex task sequences and that the robot performs well. A more advanced version 

of this task could be done using a client that would have sensors and the commands 

Illustration 24: Action sequence.



56

would be calculated from the actual position/environment data. This would reduce 

the development time of the control code and increase the accuracy of the robot. 

Force measurements were also recorded during the simulation. Figure 11 shows the 

sum of the forces in the y-direction or opposite the gravity vector (see appendix 5). 

During the time interval of 10 – 25 seconds the robot is moving and picking up the 

pole weighing  48.9 newtons (mass 5 kg). This can be seen as noise and oscillations 

in  the  graph.  At  25 seconds the pole  is  held  by the robot,  which causes a  level 

increase in the total load. At approximately 45 seconds in the simulation, the robot 

lowers the pole back on the supporting pylons, after which the robot backs off. 

An interesting detail in the wheel forces can be seen when individual wheel forces 

are plotted instead of the sum. Wheels one and two (on the positive side of the x-

axis, or in front of the robot) carry a substantially larger amount of the weight of the 

robot than wheels three and four. This can be explained by the geometry of the robot; 

the torso and its support  structures make the front end significantly heavier. The 

difference is about 2 to 1, or 700 N and 350 N per wheel in each pair. This agrees 

with  the  fact  that  the  front  support  and  torso  structure  mass  was  set  to  be  51 

kilograms when the whole weight of the robot was 202 kg. The behavior is illustrated 

in Figure 12. 

Figure 11: Sum of the wheel forces.
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Actually, this behavior has been observed in the WorkPartner robot. The robot is 

powered by a gasoline engine and batteries which are placed on the rear part of the 

robot to improve stability by acting as a counterweight for the long manipulators.   

The weight of the pole also appears to be carried mainly by wheels one and two. 

Furthermore the forces on wheels three and four decreases when the pole is grabbed 

this is  explained by the fact that the pole actually causes the whole robot to tilt, 

further decreasing the load on the rear wheel pair. 

 4.3 Use case – control code development

The next validation is to verify that the control code can be developed using the 

SimPartner framework. The scenario is that the robot is placed on a very slippery 

surface ( = 0.025) and the goal is to make the robot move as fast as possible. Theμ  

assumption is that it is possible to use wheel walking to make the robot move with a 

greater velocity.

Due  to  the  great  forces  that  take  place  in  the  rolling  walking  movement,  a  1st 

generation  robot  model  was  used.  It  was  observed that  trying  to  achieve rolling 

walking directly in the way it is done in the WorkPartner (see section 4.3.3) causes 

simulation instabilities. Therefore, the code development was performed in stages as 

shown in the following paragraphs. The mass of the robot in this simulation is 18 kg, 

which corresponds to a weight of 176 N.

Figure 12: Forces affecting each wheel in the third generation simulation.
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 4.3.1 Movement by rotation of skidding wheels

The initial setup is simply to set the rotational velocity of the wheels to be one radian 

per second, which will  cause the robot to move slowly as the wheels are mainly 

skidding and only partly moving the robot forward. The motion data is  retrieved 

from the database and the average velocity of the center of mass is calculated to be 

0.0038 meters per second (see appendix 5). The velocity without skidding would be 

0.235 meters per second, so it can be seen that the speed is severely reduced by the 

skidding of the wheels. The y-position stays very steady, as would be expected. This 

can also be seen in the wheel forces, shown in figure 14 (for wheel number reference 

to geometry, see figure 19). Despite the small high frequency oscillation, caused by 

the numerical inaccuracies of the simulation, the forces are in the correct range since 

the ideal force would be 44 newtons per wheel.

Figure 13: Robot CoM position with skidding wheels.
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Figure 14: Wheel forces in skidding wheel movement.
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 4.3.2 Caterpillar movement

The next  improvement  was  to  use  the  robot  “knee”  joints.  The  simplest  way to 

achieve this is to use caterpillar-like movement. The motion sequence is as follows:

1. Rear wheels are locked and front wheels set in free rotation. Rear legs are 

then pushed back and front wheels forward. 

2. Rear wheels are unlocked and front wheels locked

3. Rear and front wheels are brought back under the robot.

This approach gave great  increase to the velocity of the robot.  The movement is 

fairly smooth and natural looking. There is a slight oscillation in the turner joint y-

position (amplitude 1 cm). The average velocity during the course of the simulation 

increased dramatically, to 0.057 meters per second. The behavior of the wheel forces 

is entirely different, shown in figure 16.

Wheels  one  and  two  are  in  the  front.  The  large oscillation,  with  the  other  side 

carrying most of the weight of the vehicle, is caused by the contact approximation of 

the simulator that causes the entire chassis to rock slightly in this locomotion mode. 

There is still a significant difference in the load distribution between wheels one and 

four  on  the  right  side  of  the  robot  and  wheels  two and  three  on  the  left.   The 

caterpillar locomotion causes load variation in the order of 15-20 newtons per wheel 

in the course of the simulation.  

Figure 15: Robot CoM position with caterpillar 
locomotion.
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 4.3.3 Rolling Walking

Next,  a  rolling  walking (rolking)  simulation was developed.  The development  is 

based  on  a  video1 which  describes  this  locomotion  type.  The  rolling  walking 

sequence is based on the idea that the joint motors are used to move the robot with 

the wheel motors assisting in the movement. During the movement the wheel of the 

moving leg is  assisting the  movement by rotating  and the other  wheels  are  kept 

unlocked.

The motion sequence is (for a visual representation, see appendix 7):

1. Initial state: Left legs move backward, right legs forward.

2. Left rear leg moves forward and right rear  leg is allowed to move passively 

to a backward position.

3. Left front leg moves forward and right front  leg is allowed to move passively 

to a backward position. Now the robot is in a configuration that is a mirror 

image of the initial state.

1 http://automation.tkk.fi/files/workpartner/newrolking.mpg

Figure 16: Wheel forces in caterpillar locomotion.
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4. Right rear leg moves forward and left rear leg is allowed to move passively to 

a backward position.

5. Right front leg moves forward and left front leg is allowed to move passively 

to a backward position. The robot is now in the initial state.

Figure 17 shows the motion of the robot with this locomotion scheme. The simulator 

is currently slightly unideal for this locomotion as the rolling friction is incompletely 

modeled (see section  4.5.5). The velocity of the robot is 0.048 meters per second, 

which is slightly slower than in the previous simulation. The wheel forces are much 

more dynamic in this simulation, as would be expected. This is shown in Figure 18.

Figure 17: Robot CoM position with rolling walking.
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Figure 18: Wheel forces in rolling walking.
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To analyze  the  forces  in  detail,  another  simulation  was  run  with  one  motion 

sequence. The results are displayed in Figure 19.

The figure is organized so that the wheel numbers correspond to the correct locations 

on the robot when viewed from above. The numbers depict the different phases of 

the motion sequence. In (1) the robot is moving from the initial pose so that the 

wheels on the left side move backwards and the wheels on the right forwards so that 

the  knee  angle  is  0.2  radians.  After  approximately  1.3  seconds  the  first  rolling 

walking action begins (2), with the rear left wheel moving forward and rear right 

backwards.  In this position, the robot is  in  a singular configuration, left  legs are 

pointing  towards  each other  under  the  robot  and right  legs point  outwards.  This 

causes the forward pointing legs one and three to bear most of the weight of the 

robot.  In  (3)  the  front  left  wheel  moves  forward  while  the  front  right  moves 

backward. This causes the load to shift to wheels two and four. 

In (4) the rear right leg moves forward, causing a small load variation. The final 

movement (5) puts the robot to a configuration in which the motion sequence could 

be started again. The wheel loads start to converge to be the same that in (1).

Figure 19: Wheel forces in one motion sequence.
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Rolling  walking  has  been  simulated  before.  Figure  20 from  (P. Aarnio  2002, 

p.106) shows the wheel forces in a similar locomotion simulation to that presented 

here.  The  scale  is  200  newtons  and  the  weight  of  the  robot  is  different.  The 

simulation is similar to that described here. The movement that takes place in the 

figure is when leg 4 is moving forward with the wheel rolling freely.

Figure 21 is an excerpt taken from the wheel force graphs that were presented earlier. 

The figures show similarities between the two simulations. Before the transient the 

forces increase in two of the wheels, while decreasing in the other two. After the 

transient,  the  SimPartner  force  graph converges, and the  original  graph diverges. 

Furthermore,  the  duration  of  the  phenomenon  is  different  in  the  simulations, 

approximately 3.5 seconds in the original simulation compared to two seconds in 

SimPartner. The leg numbers correspond to each other in the graphs.

The conclusion of the simulation is that the results are rather similar to the simulation 

performed earlier, but it cannot be definitely said that the results are in agreement. 

Therefore, it is necessary to compare the results to those obtained with the actual 

robot. 

 4.4 SimPartner validation

The validation was made by comparing SimPartner data to measurements performed 

using the actual robot. This was achieved by running a simulation similar to that 

described in Ilkka Leppänen's dissertation  (Leppänen 2007). As stated before,  no 

detailed technical drawing of the robot is available in its dissertation configuration. 

Therefore it is necessary to deduce the mass distribution of the robot from the test 

data. As a basis (Leppänen 2007, p.72) states that the whole robot has a mass of 270 

Figure 21: Wheel forces in SimPartner.

7 7.5 8 8.5 9 9.5 10 10.5 11

0

10

20

30

40

50

60

70

80

90

100

Wheel 1

Wheel 2

Wheel 3

Wheel 4

Time (s)

F
 (

N
)

Figure 20: Wheel forces from an earlier 
simulation. 



64

kilograms and that each of the legs weighs 21 kilograms. 

The test data used in the validation covers four test runs over variable terrain. The 

test runs are approximately 55 meters long and the durations were between 700 and 

1400 seconds. Measurements were generally taken ten times per second.

 4.4.1 Model weight distribution

After tidying the force measurements from invalid values (mostly zero, sensor not 

turned on) and calculating the averages we obtained the data presented in Table 1.

We can observe that there is a discrepancy between the reported mass of the robot 

and the force measurements. The total average force is approximately 1900 newtons, 

corresponding to a mass of 194 kilograms, the difference being 76 kilograms. The 

author of the study confirmed that this is due to the positioning of the force sensors. 

The wheel and parts of the leg come after the the force sensor in the kinematic chain 

and are thus not visible in the measurements. The mass of the parts not shown by the 

sensor is about 20 kilograms per leg, which causes the difference observed.

 Also worth noting is the considerable weight difference between the various parts. 

Legs 2 and 3 have nearly equal average forces, whereas leg 1 carries a significantly 

larger amount of the weight than leg 4. The author of the study also confirmed this 

notion, explaining that when measured by scales, the robot is indeed tilted to the left 

and front. This means that leg 1 is located at the front left and leg 4 at the front right. 

It can also be deduced that leg 2 is located at the rear left and leg 3 at the rear right. 

The next step is thus to modify the SimPartner model so that the weights correspond 

to  the  measured  averages  plus  the  additional  196  newtons  not  shown  by  the 

measurements.  The target values  for  SimPartner  (using  previously  defined wheel 

numbers) are:

● Wheel 1 = 383.15 newtons + 196 newtons = 579.15 newtons.

Table 1: Force measurements from tests with the WorkPartner robot.

Average Force
Test Run Leg 1 Leg 2 Leg 3 Leg 4 Total No. of measurements

1 -591.55 -469.4 -508.82 -393.61 -1945.04 8617
2 -549.38 -432.48 -461.66 -359.36 -1784.12 12570
3 -598.81 -506.06 -476.76 -387.28 -1951.06 7412
4 -575.83 -484.52 -472.87 -392.34 -1903.9 6683

Average -578.9 -473.12 -480.03 -383.15 -1896.03
Std. Dev. 21.89 30.99 20.23 16.09 77.49
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● Wheel 2 = 578.9 newtons + 196 newtons = 774.9 newtons.

● Wheel 3 = 473.12 newtons + 196 newtons = 669.12 newtons.

● Wheel 4 = 480.03 newtons + 196 newtons = 676.03 newtons.  

A model representing these values was created (see section 3.9.4). A ten second test 

run with the model yielded the following average wheel forces:

● Wheel 1 – 595.6401 newtons.

● Wheel 2 – 785.1331 newtons.

● Wheel 3 – 670.1860 newtons.

● Wheel 4 – 702.6742 newtons.

The measurements are noisy as the robot is no longer symmetrical but is rocking 

slightly from side to side in the simulation. The average error compared to the mea-

surements done with the actual robots are in the range of 1 – 27 newtons, the maxi-

mum error being around 4 percent. This is acceptable for the validation. 

 4.4.2 Test terrain

(Leppänen 2007, p.78) presented the height profile of the terrain used in the test runs 

made with the actual robot. For our validation, we selected test run number four, in 

which the terrain used has the profile shown in figure 22.

Illustration 25: Wheel forces when creating the 
validation model.
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The  test  runs  were  made  outside  during  the  winter  season.  This  means  that  the 

ground  was  snowy  and  uneven.  The  figure  mentioned  above  only  covers  two 

dimensions so we can only model the elevation of the ground. Furthermore, the force 

measurements in the test data were rather noisy, so in order to discern features a 10-

sample sliding median filter was used with every 10th data point plotted. The filtered 

test data is shown in Figure 23. The figure shows three distinct events that took place 

during the drive. The first one is the WorkPartner driving down the slope just before 

the 20 meter mark. The next one takes place just after the second bump. The third 

one cannot be completely explained by the height graph but the referenced paper 

notes that at this points some planks had been placed on the ground. This is the cause 

for the third event.

Figure 22: WorkPartner test terrain.
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Figure 23: WorkPartner wheel forces during the test.
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 4.4.3 Test velocities

When the WorkPartner robot is traversing the test track, it is using active control for 

its wheels and legs for energy efficient locomotion. This behavior was not perfectly 

modeled in the client software as this is not within the scope of this work. Figure 24 

shows the average velocity of the robot during the test drive. It was calculated from 

the filtered odometry data and time stamps obtained by Ilkka Leppänen. The events 

corresponding to the high force value oscillations can clearly be seen.  This  data 

provides the basis for the velocities in the SimPartner simulation of the test drive.

 4.4.4 Simulation velocities

After adjusting the mass distribution of the simulation model to match with the actual 

robot a heightfield was created that corresponds with the terrain used in the test run 

with the actual robot. The wheel velocities were then set to a constant velocity of 1.5 

radians per second. The simulation ran for 104.75 seconds and the robot traversed a 

total of 34.5 meters. Figure 25 shows the velocity of the simulated robot, calculated 

as the average of the velocities of all body parts. It is significantly smoother than the 

test run made with the actual robot due to the fact that there is no active control for 

wheel velocities: the wheels try to maintain constant velocity regardless of the pose 

of the robot. 

Figure 24: WorkPartner velocity during the test run.
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The velocity  of  the  robot  slows down considerably in  the  same positions  as  the 

original test run. It can clearly be seen that these positions correspond to the locations 

where the terrain causes the robot to slow down. The simulation is thus similar to the 

actual test drive in this aspect.

 4.4.5 Simulation wheel forces

The wheel forces from the simulation are shown in Figure 26. The magnitude of the 

forces is the same as in the test run with the actual robot, when taking into account 

the fact that the forces measured from the simulation incorporate approximately 200 

newtons of leg and wheel weight. The number of measurements in the simulation is 

smaller but  the spikes in the forces can clearly be seen in the same positions as in the 

actual test run. The small height variations in the 30 meter range cause small force 

spikes even though the planks mentioned before are not modeled. The data cannot be 

compared quantitatively due to the different control algorithms, but it can be said that 

the simulation resembles the actual  test with an accuracy that  is  good enough to 

validate the simulator.

Figure 25: SimPartner velocity during the simulation.
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 4.5 Other Considerations

As stated  before, ODE is not at full  maturity at this point. There are still several 

inconsistencies  and  imperfections  in  the  physics  engine  that  must  be  taken  into 

account.  These imperfections  also affect the SimPartner framework,  and the user 

must  understand  and  accept  these  limitations  until  ODE  matures  beyond  these 

problems. Fortunately, depending on the type of simulation the user wants to achieve, 

some  of  these  problems  can  be  remedied  by  careful  tuning  of  the  simulation 

parameters.

 4.5.1 Object-object penetration

A phenomenon that can be observed, especially with box-shaped objects, is object-

object penetration. This is basically a failure in the collision detection engine and it is 

Figure 26: Wheel forces in the simulation.
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inherent to fixed time-step deterministic physics engines. This interpenetration does 

not occur when the collision is perpendicular and the contact surfaces are parallel. 

The chance of interpenetration increases when the contact angle becomes smaller and 

when  the  object  size  increases.  This  can  be  remedied  by  adjusting  different 

simulation parameters  which will  cause jittering in stacked objects as they never 

come to rest because of the small amount of penetration and the resulting force that 

tries to keep the objects apart.

 4.5.2 Object-ground penetration

Object-ground  penetration  is  based  on  the  same  phenomenon  as  object-object 

penetration.  The  main  difference is  that  in  this  case  the  other  participant  of  the 

interpenetration is the ground plane, which defines a non-usable half-space in the 

physics engine.  An implication of this is  that the object can come to rest  in this 

position as the supporting surface is calculated from the penetration points. In this 

case the supporting surface is not formed by the corner points of the object but rather 

by the intersection points of the ground plane and the penetrated area of the object. 

This phenomenon is also most frequently seen on box type objects and it can be 

remedied by adjusting the surface layer thickness parameter. Setting this higher will 

prevent penetration but might also cause jittering as objects are never fully at rest. 

Illustration 27: Object-ground 
penetration.
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 4.5.3 Physics engine numerical instabilities

Since there are several numerical problems that have to be solved for every 

simulation step, numerical problems may sometimes occur. One example of these is 

the ODE error message that appears to the console:

ODE Message 3: LCP internal error, s <= 0 (s=0.0000e+00).

LCP stands for linear complementarity problem, a linear algebra problem of finding 

two vectors that satisfy a certain set of equations based on a square matrix and a 

column vector. This problem is quite common in optimization, physics simulation 

and  mathematical  programming.  ODE  uses  a  method  developed  by  (Cottle  & 

Dantzig 1968) . 

In ODE, the LCP error surfaces when objects collide, applying too much force for 

the solver. It does not cause the simulation to crash but may cause data 

inconsistencies or non-physical behavior.

 4.5.4 Clock inaccuracy

The multitude of clock calls made by the SimPartner cause the PC clock to drift. This 

behavior will cause errors of several seconds per one minute of simulation time. This 

causes severe problems for analyzing the results, although the simulation itself runs 

well. This problem can be addressed by using NTP to actively keep the clock of the 

computer in correct time.

 4.5.5 Rolling friction

Currently ODE does not implement rolling friction. This can be observed by the fact 

that a rolling object, such as a sphere, will not come to a complete stop without 

external forces. If a simulation is initiated including a sphere with a given initial 

velocity it will proceed with a constant velocity starting from time step 1.

 4.5.6 ODE version dependency

Since the open dynamics engine is not yet at full maturity and the software is still 

being developed there is a tendency to use the most up-to-date version at all times. 

Herein, however, lies a danger. ODE version 0.9 (revision 1441) was used during the 

development  of  the  framework.  To achieve  better  performance  the  engine  was 

updated to its latest version (revision 1468) in the final stages of the project. This 

caused all the simulations to become unstable. After this event ODE's official 0.9.0 

release was used. This goes to show that the results can depend on the version of the 

physics library used. 
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 4.6 SimPartner results analysis

 4.6.1 Realization of identified good features

The conclusion of the state-of-the-art study was a list of design features that can be 

seen in high quality robotic simulator software. It is important to assess the quality of 

created software by comparing it against the feature list. 

• On target

This will ultimately be judged by the number of users this software will have. 

This feature was targeted to be achieved by the continuous dialogue between 

the author and the instructor of this thesis. Thus the user's  viewpoint was 

constantly present in the software development, which is a key issue in all 

software projects.

• Open Source

The developed software is completely open source, and it was even 

developed using open source tools. This was an unforeseen advantage as 

people in the open source community were very willing to hint and advise on 

the development as the end result would be open source. A problem in this 

development model is the licensing. Even now, the SimPartner framework 

contains components that have different licenses. Boost libraries are licensed 

under the Boost license, ODE is under BSD license, MySQL under GPL, etc. 

Thus developers need to keep track of the limitations of different licenses.

• Modular

SimPartner fulfills this requirement well. Certain interconnections exist in the 

framework but if the user wants to substitute some parts of the simulator it is 

perfectly realizable. For example, visualization information sharing with the 

window manager is achieved purely by passing homogenous transformation 

matrices and object ID numbers through the main program. If the user wants 

to create his own window manager with some other rendering engine (such as 

OpenSceneGraph1 or OGRE2), all relevant data can be found in the main 

program in a documented format. The same principle applies to database 

management and robot description modules.

• Flexible

This feature is realized by the use of human-readable configuration files of 

the SimPartner framework. Granted, the framework is rather specialized and 

it is not foreseeable that it could be used for any applications outside the field 

1 http://www.openscenegraph.org
2 http://www.ogre3d.org/
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of  robotics  simulation  but  in  its  field  it  is  rather  versatile.  Simulation 

parameters can easily be manipulated to achieve stable simulations. Robots, 

control  code  and  environments  can  be  easily  modeled  and  modified. 

Furthermore,  as  the  name  of  the  file  is  always  specified  as  a  parameter, 

storing different configurations and switching between them is easy and fast.

• Parametrized

As mentioned above, the operation of the framework can easily be 

manipulated. This was essential even in the validation phase when robot 

instabilities and performance issues could be addressed rapidly by altering 

simulation parameters. Without this feature, the completion of this thesis 

would have been impossible. 

• Platform independent

As the framework was originally programmed on Mac OS X there were some 

complications in porting the code to Ubuntu Linux. However, all the libraries 

used are portable and no OS-specific code is used in the framework. The 

software itself has been shown to operate in Linux and Mac operating 

systems, and will most probably work in Windows as well. This feature is 

therefore realized in the software.

• Real-time ready

As discussed earlier, the framework can be used with the gamepad controller 

in real time. This can be extended to other real-time HMI controllers such as 

joysticks or the manipulator control vest. 

• Connected to actual hardware

This feature is not currently implemented. The command structure of the 

WorkPartner robot is currently too complex to be integrated to the 

framework. When the GIMNet framework is extended to the WorkPartner it 

would be viable to use the simulator to guide the robot. This would require 

GIMNet to be integrated to the SimPartner framework, which was not 

achieved within the scope of this project.

• Verifiable

As this  thesis  presents,  it  is  possible  to  validate  the  simulation  model  by 

comparing the simulated data to analytically calculated or otherwise inferred 

values. The values stored in the database are always in SI-units, which makes 

it easier to analyze the data and to create new validation scenarios. 
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 4.6.2 Stability

The  stability  of  the  simulation  framework  remains  an  issue.  At  certain 

configurations,  such  as  a  case  where  all  the  joints  are  locked  with  a  sufficient 

maximum force and a zero angle setting, the robot may become unstable. This means 

that  the  simulation  literally  “explodes”  and  crashes.  This  can  be  remedied  with 

parameter manipulation or robot model modifications. There is no simple solution to 

these  problems,  which arise  with all  dynamic  simulators.  The ODE manual  lists 

some issues that affect simulation stability:

Manual Notes

Stiff springs / stiff forces are bad. 

Hard constraints are good. 

Dependence on integration 

timestep. 

Timestep is very delicate, simulation can be 

stable with 0.01 s but unstable with 0.02 s.

Use powered joint, joint limits, 

built-in springs as much as 

possible, avoid explicit forces. 

Setting forces manually to objects may cause 

undesired behavior in the integration step. This 

can in turn cause unstability.

Mass ratios - e.g. a whip. Joints 

that connect large and small masses 

together will be inherently 

susceptible to higher errors

Objects that are connected together should 

have about the same mass. Otherwise 

numerical errors in the integration may cause 

the simulation to become unstable.

If bodies move faster than is 

reasonable for the timestep 

Velocities that are too high cause problems in 

collision detection because penetration occurs.

Inertias with long axes Small and light objects are usually stable.

Increasing the global CFM will 

make the system more numerically 

robust and less susceptible to 

stability problems.

Increasing correction coefficients also cause 

the simulation to become less realistic. The 

tradeoff here is between stability and realism.

Redundant constraints (two or 

more constraints that ``try to do the 

same job'') will oppose each other 

and cause stability problems.

Redundant constraints causes singularities in 

the system matrix, creating unnatural forces 

that can be greater than the “real” forces 

affecting the bodies, thus causing aberrant 

behavior.

Table 2: Methods to increase simulation stability, adapted from (Smith n.d.) .
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 4.6.3 Performance

The  SimPartner  framework  requires  a  lot  of  computing  power, especially  when 

database  logging  is  used.  If  too  many  other  applications  are  open,  and/or  the 

computer does not possess the required computing capabilities, the performance may 

not  be  good  enough  for  real-time  operation.  Figures  27 and  28 show  this 

performance degradation clearly. FPS rates shown are 5 sample moving averages.

In Figure 27, the SimPartner framework and a sequencer client were run without any 

other software on the development computer (MacBook Core2Duo 2.0 GHz, 2 GB 

667MHz DDR2 SDRAM, OSX 10.4.11). The performance is good and stays within 

real-time operating limits (FPS is greater than 20). In Figure 28, SimPartner is run in 

parallel with a C++ development engine, word processor, internet browser, e-mail 

client,  etc.  The  real-time  performance  degradation  is  clear.  The  frame  rate  of 

SimPartner falls to the non-real-time domain and stays there, oscillating wildly. In 

this scenario the simulator is unusable.

As stated above, in some cases the simulation speed may not be adequate for real-

time operation. There are many causes for this, including the fact that SimPartner 

uses the full accuracy stepping function provided by the ODE. The parameter file 

also allows the usage of the limited accuracy “quickStep”-function. However, this 

can be unstable when the system configuration is near-singular. This is the case when 

there is a multi-legged robot standing on the ground. Therefore, this option cannot be 

relied on.

Figure 28: SimPartner performance 
with extra applications.

0 25 50 75 100 125 150 175

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

Time (s)

A
ve

ra
ge

 F
P

S

Figure 27: SimPartner performance 
without extra applications.
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 4.6.4 Open source software development

An important part of every software project is to document and analyze what was 

good and what could have been done better to improve future work. Programming 

the SimPartner framework was an important learning experience with several points 

that can be considered to be lessons learned.

The  whole  project  was  built  with  and  on  top  of  open  source  applications.  In 

application development, several tools such as Eclipse CDT integrated development 

environment, SVN source code control and versioning environment, and Doxygen 

documentation tool were used. The gain is that the operator and anyone contributing 

to  the  software are  able  to  use the  tools  without  charge. Even when these  tools 

evolve, the basic functionality often stays the same, ensuring that future work on 

your project is easier.

Communication  with  the  community  is  good.  News  groups,  IRC  channels  and 

mailing  lists  offer  great  help  when  the  development  is  in  difficulty. People  are 

generally eager to help, especially when writing open source software. There even 

exists a best practices manual on “How To Ask Questions The Smart Way” 1.

Web-based software for collaboration is effective. Related to the point above, web-

based  source  code  repositories  help  others  to  help  you.  When  all  the  programs 

produced  are  available  online,  it  is  easy  to  refer  to  them  for  everyone  to  see. 

Furthermore, popular internet-based video sites provide the opportunity to record a 

screen capture when visual documentation is necessary.

1 http://www.catb.org/~esr/faqs/smart-questions.html
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 5 Conclusions
This thesis described the design and validation process of a dynamic mobile robot 

simulator. The work was based on the state-of-the-art study and literature review of 

existing simulators and their properties. General software engineering practices and 

standards of the open source community were also taken into consideration. 

The most important validation test was to simulate a full test run done by the actual 

WorkPartner robot and to compare the results with the data from the actual robot. 

The test was a success as the results showed that the simulator was able to model the 

speed and force magnitudes of the real WorkPartner robot. It was also shown that the 

simulation errors can be identified and mathematically explained to a certain degree.

The  software  framework  follows  the  identified  common  features  of  robotic 

simulators,  furthermore  the  software  has  been  verified  to  follow  mathematical 

models and validated against actual test data. It can be thus said that the simulator is 

usable and trustworthy for control code development for  mobile robot applications, 

as long as all the constraints of simulation in general and SimPartner in particular are 

taken into account.

It  was  also  shown  that  real-time  performance  in  dynamic  robot  simulations  is 

achievable with consumer grade computers. SimPartner is a real-time simulator that 

can model complex mobile systems in a variable terrain with good enough real time 

characteristics. This, however, requires fine tuning the simulator parameters so that 

the performance level is acceptable. 

 5.1 Future work

The framework is  in itself  usable but there still  exist several  areas that could be 

improved.

• Code clarification

The framework was programmed and designed solely by the author. This is 

generally  not  a  very  good  way  to  design  software.  There  are  several  

redundant functions and data types in the software that could be simplified 

and clarified.  This  is  also true  on  a  general  level,  as  overall  complexity  

tends to increase when the program is, even partially, designed in parallel  

with the actual programming.
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• Geometry primitives

The library of possible object geometries is currently rather limited. This is a 

limitation that hinders robot control code development, as new environments 

are  harder  to  build.  However,  adding  new  primitives  is  a  rather  

straightforward task, explained in the SimPartner manual that accompanies  

the software.

• GIMNet

The GIMNet framework was not used in the software in favor of a simple 

TCP/IP based communication scheme. Adding GIMNet to SimPartner would 

be  a  good  improvement  with  added  connectivity  and  usability.  The 

framework itself is not sensitive to the communication method and since the 

base communication type is  the same adding GIMNet should not be very 

difficult.

• Robot editor

The SimPartner robot definition files tend to get rather lengthy when complex 

robots are designed. For example the fourth generation WorkPartner model 

was over 1400 lines long. A visual editor would therefore be a great aid when 

altering the designs or creating new robots. 

• Wheel-soil interaction

Wheel-soil interaction models do not currently exist in any major open source 

robotic simulators. Adding this feature to SimPartner was tested but rejected 

due to the fact that while the ODE library provides the necessary wheel forces 

they can only be obtained at the end of the simulation step. This means that 

all the forces affecting to the wheels can only be manipulated for the next 

simulation step. This means that the wheel-soil model would be always one 

step  behind  the  actual  simulation.  If  this  issue  is  solved,  adding  the 

interaction model would be possible as the ODE allows the manipulation of 

all forces and velocities during the simulation. 
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 7 Appendices
 7.1 Appendix 1 – Physics engines

Table 3: Comparison of different physics engines.
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 7.2 Appendix 2 - UML sketch

Illustration 28: SimPartner software structure.
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 7.3 Appendix 3 - Software versions

Library 
name

Abbre
viatio
n

Version 
number

URL Notes

Open 
Dynamics 
Engine

ODE 0.9 http://sourceforge.net/project/show
files.php?group_id=24884&packa
ge_id=18585&release_id=542627

Boost 1.34.1 http://www.boost.org/users/downlo
ad/

Boost 1.35 http://www.boost.org/users/downlo
ad/

For 
Boost.ASIO.

Simple 
DirectMedia 
Layer

SDL 1.2 http://www.libsdl.org/download-
1.2.php

Including SDL-
image  and 
SDL-ttf

libxml++ 2.6 http://libxmlplusplus.sourceforge.n
et/

libmysql++ 2.3.2 Apple  version 
number 
indicated.

OpenGL 
Utility 
Toolkit

GLUT 3 http://www.opengl.org/resources/li
braries/glut/

Table 4: Different software libraries used.
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 7.4 Appendix 4 - Database structure

Illustration 29: Database structure
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 7.5 Appendix 5 - Selected SQL queries

SELECT s.simulationtime,p.bodyID,p.x,p.z 
FROM pose p, simulationrow s WHERE bodyID IN(

SELECT reference 
FROM RobotComponent 
WHERE robotID IN(

SELECT robotID 
FROM Robot 
WHERE simulationID=4045)

AND type='BODY'
AND name LIKE 'Calf%')

AND p.simulationRowID = s.simulationRowID;

Query for getting the leg positions of the robot in a given simulation.

SELECT s.simulationTime,p.anchorx,p.anchory,p.anchorz 
FROM jointPose p, simulationrow s 
WHERE p.jointID IN(

SELECT reference 
FROM robotComponent 
WHERE robotID IN(

SELECT robotid 
FROM Robot 
WHERE Simulationid = 4282)

AND name ='Turner')
AND p.simulationRowID = s.simulationRowID;

Query for getting the turner joint position in a given simulation.

SELECT s.simulationTime, sum(f.F_y)  
FROM ForceAndTorque f, simulationrow s 
WHERE bodyID IN(

SELECT reference 
FROM RobotComponent 
WHERE robotID IN(

SELECT robotID 
FROM Robot 
WHERE simulationID=4939)

AND type='BODY'
AND name like 'Wheel%')

AND s.simulationrowID = f.simulationrowID
GROUP BY simulationTime
ORDER BY simulationTime ASC;

Query for getting the accumulated forces affecting the wheels in a given simulation

SELECT SimulationRow.simulationTime,avg(Pose.x),avg(Pose.y) 
FROM Pose, SimulationRow
WHERE Pose.simulationRowID = simulationRow.simulationrowID
GROUP BY Pose.simulationRowID;

Query for getting the location of the center of mass of the robot.
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 7.6 Appendix 6 - Distance sensor measurements

Figure 29: Sensor readings opposite the turning direction (legend in radians).
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Figure 30: Sensor readings in the turning direction(legend in radians).
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 7.7 Appendix 7 - Motion sequence in rolling walking

Illustration 30: Rolling Walking leg movements, From (P. Aarnio 2002)
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